
CS Space

Финал

Задача 1 (Особая функция). Существует ли такая функция 𝑓 ∈ 𝐶2(ℝ), что
для всех 𝑥 ∈ ℝ

309 < 𝑓 ′(𝑥)
𝑓(𝑥) < 444, 444 < 𝑓″(𝑥)

𝑓 ′(𝑥) < 601?

Доказательство. Из 309 < 𝑓′

𝑓 следует, что 𝑓 не обращается в нуль. Считаем
𝑓 > 0 и введём

𝑟(𝑥) = 𝑓 ′(𝑥)
𝑓(𝑥) .

Тогда 𝑟 ∈ 𝐶1(ℝ) и по условию
309 < 𝑟 < 444.

Кроме того,
𝑓″

𝑓 ′ = (ln 𝑓 ′)′ = (ln 𝑓 + ln 𝑟)′ = 𝑟 + 𝑟′
𝑟 ,

поэтому из 444 < 𝑓″

𝑓′ получаем

𝑟 + 𝑟′
𝑟 > 444 ⟹ 𝑟′ > 𝑟(444 − 𝑟).

Положим 𝑠(𝑥) = 444 − 𝑟(𝑥). Тогда 0 < 𝑠 < 135 и
𝑠′ = −𝑟′ < −𝑟(444 − 𝑟) = −𝑟𝑠 < −309𝑠.

Значит, для любого 𝑥 < 0

ln 𝑠(0) − ln 𝑠(𝑥) = ∫
0

𝑥

𝑠′(𝑡)
𝑠(𝑡) 𝑑𝑡 < ∫

0

𝑥
(−309)𝑑𝑡 = 309𝑥,

то есть
𝑠(𝑥) > 𝑠(0)𝑒−309𝑥.

При 𝑥 → −∞ правая часть стремится к+∞, что противоречит ограниченно-
сти 𝑠(𝑥) < 135. Следовательно, такой функции 𝑓 не существует.
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Задача 2 (Отскок случайного блуждания). Рассмотрим симметричное
случайное блуждание (𝑆𝑘)𝑛𝑘=0 на целых числах:

• В начальный момент 𝑆0 = 0;
• На каждомшаге значение либо увеличивается на 1, либо уменьша-
ется на 1, причём оба варианта происходят с вероятностью 1/2 и не
зависят от остальных шагов.

Обозначим через𝑚 наименьшее значение, которого блуждание дости-
гало за первые 𝑛шагов:

𝑚 = min
0≤𝑘≤𝑛

𝑆𝑘.

Обозначим через𝑅 разницумежду положениемпроцесса в финальной
точке и его минимумом:

𝑅 = 𝑆𝑛 −𝑚.
Найдите распределение случайной величины 𝑅, то есть вычислите
ℙ(𝑅𝑛 = 𝑟) для всех 𝑟 = 0, 1,… , 𝑛.

Доказательство. Заметим, что

𝑅 = 𝑆𝑛 −𝑚 = max
0≤𝑘≤𝑛

(𝑆𝑛 − 𝑆𝑘).

Введём “перевёрнутую” траекторию

𝑆𝑗 ∶= 𝑆𝑛 − 𝑆𝑛−𝑗, 𝑗 = 0, 1,… , 𝑛.

Тогда 𝑅 = max0≤𝑗≤𝑛 𝑆𝑗. Так как шаги ±1 независимы и равновероятны, то
чтение шагов с конца ничего не меняет: распределение 𝑅 совпадает с рас-
пределением максимума𝑀 = max0≤𝑗≤𝑛 𝑆𝑗.

Пусть 𝑎 ≥ 1—целое. Рассмотрим траектории, для которых𝑀 ≥ 𝑎, но 𝑆𝑛 < 𝑎,
и пусть 𝜏 — первый момент, когда 𝑆𝜏 = 𝑎. Оставим траекторию до 𝜏 как есть,
а все шаги после 𝜏 поменяем на противоположные. Тогда

𝑆′
𝑛 = 2𝑎 − 𝑆𝑛,

поэтому из 𝑆𝑛 ≤ 𝑎−1 следует 𝑆′
𝑛 ≥ 𝑎+1. Преобразование обратимо, значит

ℙ(𝑀 ≥ 𝑎, 𝑆𝑛 < 𝑎) = ℙ(𝑆𝑛 ≥ 𝑎 + 1),
и потому

ℙ(𝑀 ≥ 𝑎) = ℙ(𝑆𝑛 ≥ 𝑎) + ℙ(𝑆𝑛 ≥ 𝑎 + 1).
Отсюда для 𝑟 = 0, 1,… , 𝑛
ℙ(𝑅 = 𝑟) = ℙ(𝑀 = 𝑟) = ℙ(𝑀 ≥ 𝑟)−ℙ(𝑀 ≥ 𝑟+1) = ℙ(𝑆𝑛 = 𝑟)+ℙ(𝑆𝑛 = 𝑟+1).

Наконец,

ℙ(𝑆𝑛 = 𝑗) = 2−𝑛( 𝑛
𝑛+𝑗
2

) если 𝑛 + 𝑗 чётно, иначе 0,
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и значит

ℙ(𝑅 = 𝑟) = 2−𝑛( 𝑛
⌊𝑛+𝑟+1

2 ⌋), 𝑟 = 0, 1,… , 𝑛.

Задача 3 (Двудольный подграф). Даны связный граф 𝐺 с 𝑛 вершинами
и 𝑘 ∈ ℕ, у рёбер графа есть веса — попарно различные положительные
числа. Докажите, что связныйдвудольныйподграф𝐺наибольшего веса,
состоящий из 𝑛 вершин и 𝑛−1+𝑘 рёбер, содержит хотя бы 𝑛−1−1000𝑘
рёбер максимального остовного дерева𝐺.

Доказательство. Будем действовать от обратного и возьмем контрпример к
задаче. Несколько обобщим задачу: пусть ребра теперь имеют длину 0 или 1,
и обобщенный граф будет двудольным, если длина любого пути между лю-
быми разноцветными вершинами будет нечетной. Теперь, если есть ребро,
взятое и в остовное дерево, и в двудольный подграф, мыможем его стянуть и
пересчитать длины ребер. Сделаем такие операции, пока можно. После этих
операций мы получим граф на 𝑡 > 1000𝑘 вершинах, остовное дерево 𝑇 на
нем, а также множество ребер 𝑈 , 𝑈 ∩ 𝑇 =, |𝑈| = 𝑡 + 𝑘 − 1, причем граф на
ребрах только из 𝑈 связен, двудолен, и это подграф наибольшего веса с та-
кими свойствамина𝑈∪𝑇 . Не умаляя общности, длина всех ребериз𝑈 равна
0. Удалим также из 𝑈 все петли.
Заметим, что тогда длины всех ребер из 𝑇 равны 1, иначе мы бы могли взять
ребро 𝑥𝑦 длины 0 и заменить на какое-то ребро из 𝑈 , лежащее на пути 𝑥𝑦 –
одно из них имеет меньший вес.
Если в графе 𝑈 есть вершина 𝑣 степени 1, то мы можем заменить ребро из
нее из 𝑈 на ребро из 𝑣 наибольшего веса, входящее в 𝑇 .
Пусть теперь множество вершин 𝑉 можно разбить на 3 множества 𝑉1, 𝑉2, 𝑉3
таким образом, что все 𝑉𝑖 связны по ребрам𝑈 и при различных 𝑖, 𝑗 между 𝑉𝑖
и 𝑉𝑗 есть ровно 1 ребро из 𝑈 .
Поскольку ребра дерева должны связывать все вершины, существует такой
индекс 𝑎, что для всех 𝑖 ≠ 𝑎 между вершинами 𝑉𝑖 и 𝑉𝑎 есть ребро дерева
𝑇 , причем эти 2 ребра – самые тяжелые из возможных. Не умаляя общности,
𝑎 = 1, Заменим теперь ребра из 𝑈 между 𝑉1, 𝑉2 и 𝑉1, 𝑉3 на самые тяжелые
ребра из 𝑇 , соединяющие эти множества. Перекрасив теперь все вершины
множества 𝑉1, мы получим корректную раскраску в 2 цвета, причем общий
вес ребер увеличился.
Таким образом, граф 𝑉 не может быть разбит на 3 множества вышеописан-
нымобразом. Заметим, что если |𝑉 | > 3ив𝑉 есть 2 смежныевершиныстепе-
ни 2 (𝑢, 𝑣), то множество𝑉 ∖𝑢, 𝑣 связно, а значит множества {𝑢}, {𝑣}, 𝑉 ∖{𝑢, 𝑣}
подходят в качестве разбиения. А значит, таких смежных вершин нет.
Обозначим через 𝑚 количество вершин степени 2. Тогда по несмежности
вершин степени 2 общее количество ребер не менее 2𝑚, отсюда 2𝑚 ≤ 𝑡 +
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𝑘 − 1. С другой стороны, общее количество вершин равно 𝑡, откуда общее
количество ребер не менее 3(𝑡−𝑘)

2 + (𝑡 + 𝑘) > 𝑡 + 𝑘, поскольку 𝑡 > 1000𝑘, что
и приводит нас к противоречию.

Задача 4 (Степень многочлена). ДетсадовцыМиша иМаша играют в иг-
ру. Сначала Миша называет целое неотрицательное число 𝑘. Затем Ма-
ша называет вещественное число 𝛼, являющееся корнем некоторого
многочлена с целыми коэффициентами. После этого Миша должен ука-
зать многочлен 𝐹(𝑥, 𝑦) с целыми коэффициентами, степень которого по
переменной 𝑦 не превосходит 𝑘, обладающий следующим свойством:

• множество вещественных чисел 𝑥, для которых существует веще-
ственное 𝑦 такое, что𝐹(𝑥, 𝑦) = 0, имеет наибольший элемент, и этот
наибольший элемент равен 𝛼.

Какое наименьшее значение 𝑘 гарантирует Мише победу?

Доказательство. Ответ: 4.
Покажем сначала, что степени 4Мише достаточно.
Пусть𝛼—вещественный корень многочлена𝑃(𝑥) ∈ ℤ[𝑥]. Для определённо-
сти считаем 𝛼 > 0; случай 𝛼 < 0 разбирается аналогично.
Если𝛼 является наибольшимвещественным корнем𝑃 , тоМишаможет взять
𝐹(𝑥, 𝑦) = 𝑃(𝑥), и условие выполнено.
Пусть теперь𝛼 не является наибольшимвещественным корнем𝑃 , и пусть𝛼1
—ближайший вещественный корень𝑃 , больший𝛼. Выберем рациональное
число 𝑝

𝑞 такое, что

𝛼 < 𝑝
𝑞 < 𝛼1.

Рассмотрим многочлен
𝐹(𝑥, 𝑦) = 𝑃(𝑥)2 + (𝑦2 + 𝑞𝑥 − 𝑝)2.

Если 𝐹(𝑥, 𝑦) = 0, то обязательно 𝑃(𝑥) = 0 и 𝑦2 = 𝑝 − 𝑞𝑥, откуда 𝑥 ≤ 𝑝
𝑞 .

Следовательно, из всех вещественных корней 𝑃 допускается только 𝛼. При
этом для 𝑥 = 𝛼 существует вещественное 𝑦, удовлетворяющее 𝐹(𝛼, 𝑦) = 0.
Таким образом, наибольшее возможное значение 𝑥 равно 𝛼, а степень 𝐹 по
𝑦 равна 4, что доказывает достаточность 𝑘 = 4.
Докажем теперь, что меньшего значения 𝑘 недостаточно.
Пусть 𝛼 > 0 — вещественный корень неприводимого многочлена 𝑃(𝑥) ∈
ℤ[𝑥], причём 𝛼 не является его наибольшим вещественным корнем. Пусть
Миша сумел подобрать многочлен 𝐹(𝑥, 𝑦) степени не выше 𝑘 по 𝑦, удовле-
творяющий условию.
Во-первых, степень 𝐹 по 𝑦 не может быть нечётной: при нечётной степени
уравнение 𝐹(𝑥, 𝑦) = 0 имеет вещественный корень по 𝑦 при почти любом 𝑥,
и множество допустимых 𝑥 не будет ограничено сверху.
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Во-вторых, степень по 𝑦 не может быть равна 0, так как тогда 𝐹 не зависит
от 𝑦 и наибольшее допустимое 𝑥 обязано быть наибольшим вещественным
корнем некоторого многочлена, что невозможно для выбранного 𝛼.
Следовательно, при 𝑘 < 4 остаётся единственная возможность: степень по 𝑦
равна 2. Тогда

𝐹(𝑥, 𝑦) = 𝐴(𝑥)𝑦2 +𝐵(𝑥)𝑦 + 𝐶(𝑥),
где 𝐴,𝐵,𝐶 ∈ ℤ[𝑥]. Для фиксированного 𝑥 вещественный корень по 𝑦 суще-
ствует тогда и только тогда, когда

𝐵(𝑥)2 − 4𝐴(𝑥)𝐶(𝑥) ≥ 0.
Значит, наибольшее допустимое значение 𝑥 является наибольшим веще-
ственным корнем многочлена𝐵2 − 4𝐴𝐶 , что противоречит выбору 𝛼.
Это противоречие показывает, что 𝑘 ≥ 4.
Итак, минимальное значение, которое должен назвать Миша, равно 4.

Задача 5 (Грузовик). Обозначим через ℒ(𝑁) наименьшее общее крат-
ное всех натуральных чисел от 1 до𝑁 . Найдите все функции ∶ ℕ → ℕ,
для которых при всех натуральных 𝑛,𝑚 выполнено:

ℒ( (𝑛)) + ℒ( (𝑚)) ⋮ ℒ(𝑛) + ℒ(𝑚).

Грузовик. Покажем, что для всех𝑚 выполнено

ℒ( (𝑚)) = ℒ(𝑚).

Сначала предположим, что существуют сколь угодно большие 𝑚, для кото-
рых

ℒ( (𝑚)) ≤ ℒ(𝑚).
Зафиксируем произвольное 𝑎. По условию

ℒ( (𝑚)) + ℒ( (𝑎))
делится на

ℒ(𝑚) + ℒ(𝑎)
для сколь угодно больших𝑚. При достаточно больших𝑚 это возможно лишь
тогда, когда

ℒ( (𝑚)) + ℒ( (𝑎)) = ℒ(𝑚) + ℒ(𝑎).
Следовательно,

ℒ( (𝑚)) − ℒ(𝑚) = ℒ(𝑎) − ℒ( (𝑎)) = 𝑘,
где 𝑘 — фиксированное целое число, не зависящее от 𝑚. Но при неограни-
ченном росте 𝑚 левая часть не может оставаться постоянной, если только
𝑘 = 0. Значит,

ℒ( (𝑎)) = ℒ(𝑎).
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Так как 𝑎 выбиралось произвольно, получаем
ℒ( (𝑚)) = ℒ(𝑚)

для всех𝑚.
Остаётся рассмотреть случай, когда существует𝑁 такое, что при всех 𝑛 > 𝑁

ℒ( (𝑛)) > ℒ(𝑛).
Рассмотрим такое 𝑛. По условию

ℒ( ( (𝑛))) + ℒ( (𝑛))
делится на

𝐾 = ℒ( (𝑛)) + ℒ(𝑛).
Аналогично,

ℒ( (𝑘+1)(𝑛)) + ℒ( (𝑘)(𝑛))
делится на𝐾 для любого 𝑘 ≥ 1, где (𝑘) — 𝑘-я итерация функции .

По индукции получаем, что ℒ( (𝑘)(𝑛)) не делится на 𝐾 ни при каком 𝑘. С
другой стороны, значения (𝑘)(𝑛) строго возрастают, а значит ℒ( (𝑘)(𝑛))
рано или поздно станет кратным𝐾 , что даёт противоречие.
Следовательно, этот случай невозможен, и для всех𝑚 выполняется

ℒ( (𝑚)) = ℒ(𝑚).

Таким образом, все подходящие функции — это в точности функции, со-
храняющие значение ℒ, то есть такие, что между 𝑚 и (𝑚) не появляется
новых простых степеней.

Задача 6 (Чёрно-белые числа). Число 4 покрашено в белый цвет, а все
остальные целые числа покрашены в чёрный.
Если 𝑥 белое, то разрешается перекрасить в белый числа

5𝑥 − 10 и 27𝑥2 + 7𝑥 + 47.
Найдите наименьшее возможное расстояниемежду двумя различными
белыми числами после серии перекрашиваний.

Доказательство. Будем работать по модулю 71.
Если 𝑥 белое, то перекрашиваются

𝑦1 = 5𝑥 − 10, 𝑦2 = 27𝑥2 + 7𝑥 + 47.
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Значит, остатки 𝑦1, 𝑦2 помодулю 71 зависят только от остатка 𝑟 ≡ 𝑥 (mod 71):
𝑦1 ≡ 5𝑟 − 10 (mod 71), 𝑦2 ≡ 27𝑟2 + 7𝑟 + 47 (mod 71).

Пусть𝑆—множество остатков помодулю 71, которыемогут иметь белые чис-
ла. Начинаем с 4 ∈ 𝑆 .
Шаг 1: считаем образы по модулю 71.
Из 𝑟 = 4:
5 ⋅ 4−10 = 10, 27 ⋅ 42+7 ⋅ 4+47 = 27 ⋅ 16+28+47 = 507 ≡ 10 (mod 71).
Значит, 10 ∈ 𝑆 .
Из 𝑟 = 10:

5 ⋅ 10 − 10 = 40,
27 ⋅ 102 + 7 ⋅ 10 + 47 = 2700 + 70 + 47 = 2817 ≡ 48 (mod 71).

Значит, 40, 48 ∈ 𝑆 .
Из 𝑟 = 40:

5 ⋅ 40 − 10 = 190 ≡ 48 (mod 71),
27 ⋅ 402 + 7 ⋅ 40 + 47 = 27 ⋅ 1600 + 280 + 47 = 43527 ≡ 4 (mod 71).

Из 𝑟 = 48:
5 ⋅ 48 − 10 = 230 ≡ 17 (mod 71),

27 ⋅ 482 + 7 ⋅ 48 + 47 = 27 ⋅ 2304 + 336 + 47 = 62591 ≡ 40 (mod 71).
Значит, 17 ∈ 𝑆 .
Из 𝑟 = 17:

5 ⋅ 17 − 10 = 75 ≡ 4 (mod 71),
27 ⋅ 172 + 7 ⋅ 17 + 47 = 27 ⋅ 289 + 119 + 47 = 7969 ≡ 17 (mod 71).

Итак, множество
𝑆0 = {4, 10, 17, 40, 48}

содержит 4 и замкнуто относительно переходов 𝑟 ↦ 5𝑟 − 10 и 𝑟 ↦ 27𝑟2 +
7𝑟 + 47 по модулю 71. Следовательно, по индукции после любой серии пе-
рекрашиваний любое белое число имеет остаток из 𝑆0 по модулю 71.
Шаг 2: нижняя оценка на расстояние.
Возьмём два различных белых целых числа 𝑎 ≠ 𝑏 и положим 𝑑 = |𝑎−𝑏|. Если
𝑎 ≡ 𝑏 (mod 71), то 71 ∣ 𝑑, значит 𝑑 ≥ 71.
Если же 𝑎 ≢ 𝑏 (mod 71), то их остатки по модулю 71— два разных элемента
из 𝑆0. Отсортируем: 4 < 10 < 17 < 40 < 48.
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Тогда круговые промежутки равны

10 − 4 = 6, 17 − 10 = 7, 40 − 17 = 23, 48 − 40 = 8, 71 + 4 − 48 = 27,
и минимальный равен 6. Значит, для любых разных остатков из 𝑆0 их рассто-
яние по кругу не меньше 6, а значит и для любых белых 𝑎 ≠ 𝑏 невозможно
|𝑎 − 𝑏| ∈ {1, 2, 3, 4, 5}. Следовательно,

|𝑎 − 𝑏| ≥ 6.

Шаг 3: достижимость.
Из исходного белого 4 по правилу 5𝑥 − 10 получаем белое

5 ⋅ 4 − 10 = 10,
и

|10 − 4| = 6.
Итак, наименьшеевозможноерасстояниемеждудвумяразличнымибелыми
числами равно 6.

Задача 7 (Фирма). В фирму по ремонту пришли несколько заказов за
день. Один заказ представляет из себя отрезок времени, в который ра-
ботникбудет его выполнять. Каждыйработникможет выполнитьмноже-
ство заказов, если они не пересекаются по времени. Обозначим через
𝑀 наименьшее возможное количество работников, которые могут вы-
полнить все заказы.
Положим теперь, что заказы приходят последовательно в заранее вы-
бранном порядке, но фирма не знает этот порядокч. На каждом новом
заказе фирма обязана назначать сотрудника и после выбора уже не мо-
жет его заменить.

(a) Рассмотрим стратегию «назначать заказ самому младшему работ-
нику». Докажите, что она потребует не более 𝐶𝑀2 работников для
некоторой большой константы 𝐶 .

(b) Правда ли, что стратегия пункта (a) требует не более 𝐶𝑀 log𝑀 ра-
ботников для некоторой большой константы 𝐶?

(c) Предложите стратегию выделения работников, которая гарантиро-
ванно потребует не более𝐶𝑀 работников для некоторой большой
константы 𝐶 .

Замечание. Каждый пункт этой задачи оценивается в один балл.

Доказательство. a)Положим противное и рассмотрим 𝐼 – некую работу 1–го
работника. Заметим, что для какого-то 𝑖 ∈ [2, 2𝑀 + 2] существует работа 𝑖–го
работника, чей отрезок лежит строго внутри 𝐼 – иначе один из концов 𝐼 по-
крыт хотя бы 𝑀 + 1 – им отрезком работы, и в этом случае их невозможно
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выполнить𝑀 рабочим. Перейдем к этому 𝑖 и продолжим процесс, получим
последовательность из> 𝑀 вложенных отрезков, что снова ведет нас к про-
тиворечию.
b)Да, верно. Докажем индукцией по 𝑚 следующее утверждение: Пусть ра-
бочих произвольное количество. Тогда каких бы 20𝑚 log2 𝑚 мы рабочих не
взяли, то для любого отрезка прямой 𝐼 , чьи концы не принадлежат отрез-
кам данных работников, существует отрезок работы одного из них 𝐼′, каждая
точка которого принадлежит хотя бы𝑚 разным отрезкам работ из этого мно-
жества.
Докажем это для𝑚 – степени двойки. Для произвольного𝑚 следует с точно-
стью до константы.
База:𝑚 = 1 – верно.
Переход: Пусть 𝑀 = 2𝑘. Рассмотрим первых 20𝑘 log 𝑘 рабочих из взятых.
По индукции существует отрезок работы 𝐼 , каждая точка которого покры-
та хотя бы 𝑘 работами из них. Заметим, что существует не более 12𝑘 ра-
бот, покрывающий один из концов 𝐼 – иначе среди них будет работа, каж-
дая точка которой покрыта хотя бы 2𝑘 + 1–ой из них. Но тогда, поскольку
40𝑘 log 𝑘 + 12𝑘 < 𝑚 log𝑚, применим индукцию для всех оставшихся хотя
20𝑚 log𝑚−20𝑘 log 𝑘 − 12𝑘 рабочих, не покрывающий концы отрезка 𝐼 , и от-
резка 𝐼 . По индукции существует отрезок 𝐼′, покрытый хотя бы 𝑘 отрезками
из них. Тогда итого он покрыт хотя бы𝑚 = 2𝑘 отрезками, что и требовалось.
c)Алгоритм, описанный выше, достигает такой оценки, но доказательство
этого факта непростое. Опишем более просто доказываемый алгоритм.
Будем раздавать работникамметки – натуральные числа. В качестве метки 𝑖–
го отрезка возьмем такое минимально возможное 𝑡, что, если взять его и все
отрезки с метками от 1 до 𝑡, никакая точка прямой не будет покрыта более
чем 𝑡 отрезками из них.
Определяя метки по таким правилам, получается, что никакая точка прямой
не покрывается 3 отрезками с одинаковой меткой.
Теперь зарезервируем для каждой метки 10 своих работников и будем раз-
давать им работы по описанному в предыдущих пунктах жадному алгорит-
му.
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Задача 8 (Строка Дракона). Однажды к Принцессе в башню прилетел
коварный Дракон и принёс строку из 0 и 1 длины 𝑛. После этого к Прин-
цессе на чай зашёл Принц и они сыграли в следующую игру:

• Принц с Принцессой — союзники и играют против Дракона.
• Дракон сообщает строку Принцессе, Принц не получает никакой
информации.

• Происходит 𝑛 раундов по правилам: на 𝑖-ом раунде Принц с Прин-
цессой взакрытую пишут по одному биту (0 или 1), после чего пока-
зывают их, и Дракон также говорит 𝑖-ый бит своей строки. Если все
три бита равнымежду собой, Дракон выдаёт игрокам одну конфету.

Принц и Принцесса могут обсудить стратегию игры заранее, но строка
Дракона заранее им неизвестна.
Обозначим через𝐶(𝑛) наибольшее число конфет, которое игрокимогут
гарантированно заработать вне зависимости от строкиДракона. Найди-
те

sup
𝑛→∞

𝐶(𝑛)
𝑛 .

Замечание. Данная задача оценивается отличным от остальных спосо-
бом:

• оптимальное решение даст вам полный балл;
• неоптимальное решение может принести ненулевое количество
баллов, которое вы узнаете только после рассказа — поэтому мож-
но сдавать и неоптимальные решения;

• число попыток, как обычно, ограничено тремя.

Доказательство. Ответ: 0.810..., а именно, корень уравнения ln 2 = (1 −
𝛼) ln 3 − 𝛼 ln𝛼 − (1 − 𝛼) ln(1 − 𝛼).
Оценка: Рассмотрим 2 множества позиций 𝐴1, 𝐴2, на которых ошибаются
принц и Принцесса. Заметим, что эти два множества однозначно задают
строку – действительно, если эти множества совпадают, то и весь процесс
идет одинаково.
Обозначив 𝑋 = 𝐴1 ∩ 𝐴2. При фиксированном 𝑋 существует 3𝑛−|𝑋| спосо-
бов выбрать множества𝐴1, 𝐴2. Тогда 2𝑛 ≤ ∑𝑆(𝑛)≤𝑖≤𝑛 𝐶𝑖

𝑛3𝑛−𝑖. Оценив правую

часть наибольшимслагаемым, обозначив𝛼 = sup 𝑆(𝑛)
𝑛 , взяв логарифмыипе-

рейдя к пределу, получим, что ln 2 ≤ (1 − 𝛼) ln 3 − 𝛼 ln𝛼 − (1 − 𝛼) ln(1 − 𝛼),
отсюда 𝛼 не больше этого корня.
Пример: Обозначим 𝛼 за корень и выберем 𝑎 < 𝛼, Возьмем 𝑏 = 𝑎+ 𝑎

3 и возь-
мем 𝑡 такое, что 𝑡𝑏 целое. Тогда из вероятностных соображений существует
множество𝑀 битовых строк длины 𝑡 размера≤ 𝑝𝑜𝑙𝑦(𝑡)2𝑡

𝐶𝑏𝑡
𝑡

такое, что для любой
строки существует строка из𝑀 на расстоянии 𝑏𝑡 от нее.
Наш алгоритм будет устроен следующим образом – разрежем строку длины
𝑁 намного словокдлины 𝑡. СтратегияПринцессыследующая: в текущембло-
ке она передает, к какой строке множества 𝑀 близка строка в следующем
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блоке.Принцжепростоназывает строкумножества𝑀 . КакимобразомПрин-
цесса передает? Она видит следующий кусок и знает, где именно ошибется
на нем второй, причем таких ошибок не более 𝑏𝑡. Тогда Принцесса выбира-
ет некоторое множество позиций, на которых ошибется сам, причем такое,
что объединение этих множеств имеет размер не более чем 𝑡𝑡. Количество
таких строк не менее 2𝑡−𝑏𝑡𝐶𝑎𝑡

𝑏𝑡 . Можно проверить теперь, что при больших 𝑡
𝑝𝑜𝑙𝑦(𝑡)2𝑡

𝐶𝑏𝑡
𝑡

< 2𝑡−𝑏𝑡𝐶𝑎𝑡
𝑏𝑡 – действительно, заметим, что в блоке длины 𝑡 у нас могу

реализоваться все пары множеств ошибок, одно из которых имеет размер
𝑏𝑡, а пересечение – размер 𝑎𝑡. Но количество пар таких множеств отличается
от количества пар множеств с пересечением не менее 𝑎𝑡 в 𝑝𝑜𝑙𝑦(𝑡) раз, отку-
да и видно, что при большом 𝑡 неравенство верно. Таким образом, искомый
супремум равен этому 𝛼.
Комментарий:Можнопоказать, что работает следующая стратегия: Принцес-
са выбирает случайный набор битовых чисел 𝑥1, 𝑥2,… , 𝑥𝑛, известных обоим.
Числа в наборе имеют длину 𝑛 и выбраны независимо. У них также есть об-
щее число 𝑦 длины 𝑛, изначально равное 0. Теперь Принц называет на 𝑖-том
ходу 𝑖-тый бит числа 𝑦 только единицы, а Принцесса некоторым образом на-
зывает 0 или 1, и если она называет 1, то 𝑦 меняется на 𝑦𝑥𝑖 . Оказывается, с ве-
роятностью, стремящейся к 1, Принцесса для каждой начальной строки мо-
жет выбирать нули и единицы таким образом, что д они заработают хотя бы
(𝛼 − 𝜖)𝑛 конфет для любого 𝜖 > 0 и достаточно больших 𝑛
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