
Отборочныйэтап

Задача 1 (Муравей на додекаэдре). Рассмотримправильный додекаэдр,
у которого длина каждого ребра равна 1. Пусть𝐴и𝐵—центрыдвух диа-
метрально противоположных граней додекаэдра (то есть такие центры,
которые соединяются отрезком, проходящимчерезцентрмногогранни-
ка).
Муравей находится в точке 𝐴 и может перемещаться только по поверх-
ности додекаэдра, оставаясь на его гранях. Найдите длину кратчайшего
пути муравья от точки𝐴 до точки𝐵 по поверхности многогранника.

Доказательство. Кратчайший путь по поверхности при фиксированной по-
следовательности гранейпослеразвёрткиэтих гранейвплоскость становит-
ся отрезком. Между центрами противоположных граней кратчайшая геоде-
зическая проходит через ровно 4 грани (в графе смежности граней это рас-
стояние 3), причём есть два кандидата; по развёртке видно, что путь через
вершину длиннее, поэтому берём путь, пересекающий общие рёбра в их се-
рединах.
Развернёмвплоскостьцепочкуиз4правильныхпятиугольников𝐹0, 𝐹1, 𝐹2, 𝐹3,
где𝐴—центр𝐹0, а𝐵—центр𝐹3 (послеразвёртки). Обозначимцентрычерез
𝐶0, 𝐶1, 𝐶2, 𝐶3.
В правильном пятиугольнике со стороной 1 радиус вписанной окружности
равен 𝑎 = 1

2 tan(𝜋/5) , поэтому расстояние между центрами двух соседних гра-
ней на развёртке равно

|𝐶𝑘+1 −𝐶𝑘| = 2𝑎 = cot
𝜋
5 .

Длявыбраннойцепочки (этовиднонаразвёртке) направлениявекторов𝐶0𝐶1
и 𝐶2𝐶3 совпадают, а вектор 𝐶1𝐶2 повернут относительно них на угол

𝜋
5 . По-

ложим 𝐿 = cot 𝜋
5 и отождествим плоскость с ℂ. Тогда

𝐶3 −𝐶0 = 𝐿(1 + 𝑒𝑖𝜋/5 + 1) = 𝐿(2 + 𝑒𝑖𝜋/5),
и потому

|𝐶3 −𝐶0| = 𝐿|2 + 𝑒𝑖𝜋/5|.
Далее

|2 + 𝑒𝑖𝜋/5|2 = (2 + cos
𝜋
5)

2 + sin2 𝜋
5 = 5 + 4 cos 𝜋5 .

Так как cos 𝜋
5 = 1+

√
5

4 , получаем

|2 + 𝑒𝑖𝜋/5|2 = 6 +
√
5.

Следовательно,
𝑑2 = cot2

𝜋
5 (6 +

√
5).
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Учитывая cot2 𝜋
5 = 5+2

√
5

5 , получаем

𝑑2 = 40 + 17
√
5

5 , 𝑑 = √40 + 17
√
5

5 ≈ 3.9500166.

Задача 2 (Равновесия Нэша). Рассмотрим аукцион с запечатанными
ставками. В аукционе участвуют 10 игроков. Ценность лота определяет-
ся следующим образом: за ширмой независимо подбрасывают 30 чест-
ных монет, и за каждый выпавший орёл к стоимости лота прибавляется
1рубль. Каждыйигрок выбирает неотрицательнуюцелую ставку. Лот до-
стаётся одному из игроков, сделавших максимальную ставку; если мак-
симальную ставку сделали несколько игроков, победитель выбирается
равновероятно срединих. Победитель платит своюставку, остальныене
платят ничего. Требуется определить число чистых равновесий Нэша.

Доказательство. Обозначим случайную ценность лота через 𝑉 . Тогда 𝑉 ∼
Bin(30, 12) и 𝔼𝑉 = 15.
Пусть в профиле максимальная ставка равна 𝑏, и её делают ровно 𝑘 ≥ 1 иг-
роков. Тогда ожидаемый выигрыш каждого из них равен

𝑢max =
1
𝑘(15 − 𝑏),

а любой игрок с меньшей ставкой имеет выигрыш 0.
1. Ограничениена 𝑏.Если 𝑏 ≥ 16, то𝑢max < 0, и игрок смаксимальнойставкой
выгодно отклоняется к 0, поэтому в равновесии 𝑏 ≤ 15. Если 𝑏 ≤ 13, то игрок
с меньшей ставкой может поставить 𝑏 + 1 и получить 15− (𝑏 + 1) > 0, значит
в равновесии 𝑏 ≥ 14. Итак, 𝑏 ∈ {14, 15}.
2. Случай 𝑏 = 14. Если 𝑘 < 10, то игрок с меньшей ставкой, поставив 14, полу-
чает 1

𝑘+1(15−14) = 1
𝑘+1 > 0, значит равновесие невозможно. Следовательно,

единственное равновесие при 𝑏 = 14— это (14,… , 14).
3. Случай 𝑏 = 15. Если 𝑘 = 1, то единственный игрок со ставкой 15 имеет
выигрыш 0 и выгодно отклоняется к 14, получая положительный выигрыш
(либо 1, либо 1

𝑡+1 при ничьей на 14). Если же 𝑘 ≥ 2, то любой игрок со ставкой
15 не может улучшить 0 отклонением (ставка ≤ 14 даёт 0, ставка ≥ 16 даёт
отрицательный выигрыш), и любой игрок со ставкой < 15 также не может
получить> 0. Значит равновесия при 𝑏 = 15—ровно профили, где ставок 15
как минимум две.
4. Подсчёт. Число профилей из {0, 1,… , 15}10, где хотя бы две ставки равны
15, равно

1610 − 1510 −(10
1 )159.
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Добавляя профиль (14,… , 14), получаем
1610 − 1510 − 10 ⋅ 159 + 1 = 138427643402.

Задача 3 (Кокасательная). Дан приведённый кубический многочлен

𝑓(𝑥) = 𝑥3 + 𝑝𝑥2 + 𝑞𝑥 + 𝑟, 𝑝, 𝑞, 𝑟 ∈ ℝ.
В точке 𝑥 = 𝑡 касательная к графику 𝑦 = 𝑓(𝑥)— это прямая, касающаяся
графика в точке (𝑡, 𝑓(𝑡)). Кокасательная (нормаль) в точке 𝑥 = 𝑠 — это
прямая, проходящая через (𝑠, 𝑓(𝑠)) и перпендикулярная касательной в
этой точке.
Назовём интересной прямую, которая одновременно:

• является касательной к графику в некоторой точке (𝑡, 𝑓(𝑡)),
• является кокасательной (нормалями) к графику в некоторой (воз-
можно другой) точке (𝑠, 𝑓(𝑠)).

Известно, что для конкретногомногочлена существуютровно 2интерес-
ные прямые,
Найдите все возможные длины отрезков, высекаемых интересной пря-
мой (расстояния между точками касания и кокасания):

𝑑 = √(𝑡 − 𝑠)2 + (𝑓(𝑡) − 𝑓(𝑠))2.

Доказательство. Сдвиг по оси 𝑥 на 𝑝/3 убирает квадратный член, а сдвиг по
оси 𝑦 убирает свободный член и не меняет ни углов наклона касательных/-
нормалей, нирасстояниемежду точкамина графике. Поэтомуможно считать

𝑓(𝑥) = 𝑥3 + 𝑎𝑥
(ниже 𝑎 ∈ ℝ).
Пусть одна и та же прямая является касательной в 𝑥 = 𝑡 и нормалью в 𝑥 = 𝑠.
Обозначим ее угловой коэффициент через 𝑚. Тогда 𝑚 = 𝑓 ′(𝑡) = 3𝑡2 + 𝑎
и одновременно 𝑚 = −1/𝑓 ′(𝑠), то есть (3𝑡2 + 𝑎)(3𝑠2 + 𝑎) = −1. Условие
прохождения через обе точки дает 𝑓(𝑠) − 𝑓(𝑡) = 𝑚(𝑠 − 𝑡). Но 𝑓(𝑠) − 𝑓(𝑡) =
(𝑠−𝑡)(𝑠2+𝑠𝑡+𝑡2+𝑎), значит при 𝑠 ≠ 𝑡 получаем 𝑠2+𝑠𝑡+𝑡2+𝑎 = 𝑚 = 3𝑡2+𝑎,
откуда 𝑠2 + 𝑠𝑡 − 2𝑡2 = (𝑠 − 𝑡)(𝑠 + 2𝑡) = 0 и потому

𝑠 = −2𝑡.
Подставляя в (3𝑡2 + 𝑎)(3𝑠2 + 𝑎) = −1 и обозначая 𝑢 = 𝑡2 ≥ 0, получаем
(3𝑢 + 𝑎)(12𝑢 + 𝑎) = −1, то есть

36𝑢2 + 15𝑎𝑢 + (𝑎2 + 1) = 0.
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Поскольку интересных прямых ровно две, решений по 𝑡 ровно два, значит
уравнение по 𝑢 имеет ровно один корень 𝑢 > 0, то есть дискриминант равен
нулю: 81𝑎2 − 144 = 0, откуда 𝑎 = ±4/3. Положительный корень 𝑢 = −5𝑎/24
существует только при 𝑎 = −4/3, и тогда

𝑢 = 5
18, 𝑚 = 3𝑢 + 𝑎 = 5

6 − 4
3 = −1

2.

Теперь 𝑠 = −2𝑡, поэтому 𝑡−𝑠 = 3𝑡и 𝑓(𝑡)−𝑓(𝑠) = 𝑓(𝑡)−𝑓(−2𝑡) = 3𝑡(3𝑡2+𝑎) =
3𝑡𝑚. Следовательно

𝑑2 = (𝑡−𝑠)2+(𝑓(𝑡)−𝑓(𝑠))2 = 9𝑡2(1+𝑚2) = 9𝑢 (1 +𝑚2) = 9⋅ 518 (1 + 1
4) = 25

8 .

Значит возможная длина единственна:

𝑑 = 5
√
2

4 .

Задача 4 (10 чисел). Найти десять положительных целых чисел

𝑥1, 𝑥2,… , 𝑥10,
таких, что для любых 𝑖 ≠ 𝑗 выполняется

|𝑥𝑖 − 𝑥𝑗| ≥ 100,
и при этом имеет место равенство

(𝑥1 + 𝑥2 +⋯+ 𝑥10)
2

𝑥2
1 + 𝑥2

2 +⋯+ 𝑥2
10

= 3.

Доказательство. Домножение всех чисел на 100 не меняет значение дроби,
поэтому достаточно найти целые 𝑦1,… , 𝑦10 такие, что |𝑦𝑖−𝑦𝑗| ≥ 1 и (𝑦1+⋯+
𝑦10)2 = 3(𝑦21 +⋯+ 𝑦210), а затем положить 𝑥𝑖 = 100𝑦𝑖.
Рассмотрим уравнение как квадратное по одной переменной. Зафиксируем
9 чисел, пусть их сумма равна 𝐴, а десятая переменная равна 𝑦. Тогда усло-
вие имеет вид (𝐴+𝑦)2 = 3(𝐵+𝑦2), откуда получается квадратное уравнение
по 𝑦; по Виету сумма его корней равна 𝐴. Значит, если набор (… , 𝑦) являет-
ся решением, то после замены 𝑦 ↦ 𝐴 − 𝑦 (прыжок Виета) снова получаем
решение.
Стартуем с решения

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0),
так как 𝑆 = 3,𝑄 = 3 и 𝑆2 = 3𝑄.
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Теперь последовательно применяем прыжок Виета к нулевой координате
𝑦 = 0. Тогда𝐴 равна сумме остальных девяти, то есть текущей сумме 𝑆 , и но-
вая координата становится𝐴− 0 = 𝑆 . При каждом таком шаге сумма удваи-
вается, поэтому получаем

(1, 1, 1, 3, 6, 12, 24, 48, 96, 192).

Остались повторяющиеся единицы. Применим прыжок Виета к каждой из
трех единиц по очереди. Если текущая сумма равна 𝑆 и выбранная коорди-
ната равна 1, то𝐴 = 𝑆−1 и новая координата равна𝐴−1 = 𝑆−2. Три таких
шага дают

(382, 763, 1525, 3, 6, 12, 24, 48, 96, 192).
Все числа положительны и попарно различны, значит |𝑦𝑖 − 𝑦𝑗| ≥ 1, и равен-
ство сохранялось на каждом шаге.
Возвращаясь к исходной задаче, положим 𝑥𝑖 = 100𝑦𝑖.

Задача 5 (Дом, который построил Тимофей). Рассмотрим «треугольный
дом, который построил Тимофей».

• Берём правильную треугольную призму с ребром основания 1 и
высотой 1 (то есть боковые грани — квадраты 1 × 1).

• К верхнему основанию призмы приклеиваем правильную тре-
угольную пирамиду (правильный тетраэдр без основания), так что
её основание совпадает с верхним треугольником призмы.

• Получается выпуклое тело с 7 гранями: 4 равносторонними тре-
угольниками и 3 квадратами.

Развёрткой этого тела называется плоская фигура, получающаяся раз-
резанием поверхности по некоторым рёбрам и раскладыванием всех
граней на плоскости без наложений (грани могут соприкасаться только
по общим сторонам или вершинам).
Две развёртки считаются одинаковыми, если одну можно совместить с
другой движением плоскости (разрешены повороты, параллельные пе-
реносы и отражения).
Максим хочет найти количество различных развёрток «треугольного до-
ма Тимофея», но ему кажется это очень сложной задачей. Помогите ему
это сделать.

Доказательство. Обозначимграни:𝑇 —нижнийтреугольник,𝑆1, 𝑆2, 𝑆3—три
квадратапризмыпокругу,𝑅1, 𝑅2, 𝑅3—трибоковые треугольные грани «кры-
ши» по кругу, где 𝑆𝑖 граничит с𝑅𝑖.
Рассмотримдвойственный граф𝐺 (вершины—грани, ребро—общая сторо-
на). Тогда:𝑇 соединёнскаждым𝑆𝑖,𝑆1, 𝑆2, 𝑆3 образуют треугольник,𝑅1, 𝑅2, 𝑅3
образуют треугольник, и есть рёбра 𝑆𝑖𝑅𝑖 для 𝑖 = 1, 2, 3. Всего у 𝐺 7 вершин
и 12 рёбер.
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Развёрткесоответствует выборразрезаемыхрёберповерхности; вдвойствен-
ном графе это эквивалентно выбору поддерева, содержащего все 7 вершин,
то есть остовного дерева 𝐺. Для данного тела все такие развёртки не само-
пересекаются, поэтому число развёрток равно числу остовных деревьев𝐺 с
учётом симметрий тела.
1) Число остовных деревьев 𝐺. По теореме Кирхгофа это определитель при-
ведённойматрицыЛапласа. Удалим вершину 𝑇 . Тогда остаётся матрица раз-
мера 6 × 6 в блок-форме

𝐿 = (5𝐼 − 𝐽 −𝐼
−𝐼 4𝐼 − 𝐽) ,

где 𝐼 — единичная 3 × 3, 𝐽 —матрица из единиц, верхний блок соответству-
ет 𝑆1, 𝑆2, 𝑆3, нижний — 𝑅1, 𝑅2, 𝑅3. Разложим ℝ3 = ⟨(1, 1, 1)⟩ ⊕ (1, 1, 1)⟂. На
(1, 1, 1)⟂ матрица 𝐽 действует как 0, поэтому на каждом из двух базисных на-
правлений получаем

det( 5 −1
−1 4 ) = 19,

то есть вклад 192. На ⟨(1, 1, 1)⟩ матрица 𝐽 действует как умножение на 3, по-
этому получаем

det( 2 −1
−1 1 ) = 1.

Значит
𝜏(𝐺) = det𝐿 = 192 = 361.

2) Учёт симметрий. Группа симметрий тела, сохраняющих типы граней, изо-
морфна𝐷3 (повороты и отражения, переставляющие индексы 1, 2, 3), её по-
рядок равен 6. Две развёртки считаются одинаковыми тогда и только тогда,
когда соответствующие остовные деревья переходят друг в друга автомор-
физмом𝐷3. По лемме Бёрнсайда число различных развёрток равно

𝑁 = 1
6 ∑

𝑔∈𝐷3

Fix(𝑔),

где Fix(𝑔)— число остовных деревьев, неподвижных при 𝑔.
Очевидно Fix(id) = 361.
Для поворота на 120∘ (и на 240∘) неподвижное дерево обязано содержать ли-
бо все три ребра 𝑇𝑆𝑖, либо ни одного; так как вершина 𝑇 должна быть свя-
зана с остальными, эти три ребра входят все. Аналогично, чтобы подключить
𝑅1, 𝑅2, 𝑅3, должны войти все три ребра 𝑆𝑖𝑅𝑖. Любое ребро внутри треуголь-
ника 𝑆1𝑆2𝑆3 или 𝑅1𝑅2𝑅3 тогда создаёт цикл, поэтому такое дерево един-
ственно:

Fix(поворот) = 1,
и таких поворотов два.
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Для отражения (их три) фиксируются 𝑇 , 𝑆1, 𝑅1, а пары (𝑆2, 𝑆3) и (𝑅2, 𝑅3) пе-
реставляются. Неподвижное дерево должно содержать рёбра попарно сим-
метрично (или фиксированные). Краткая проверка случаев на связность и
отсутствие циклов даёт ровно 5 вариантов, то есть

Fix(отражение) = 5,
и таких отражений три.
Итак,

𝑁 = 361 + 2 ⋅ 1 + 3 ⋅ 5
6 = 378

6 = 63.

Следовательно, число различных развёрток равно 63.

Задача 6 (Мартышка и клавиатура). Мартышка бесконечно печатает
независимуюпоследовательностьбукв, каждыйразвыбираяоднуизла-
тинских букв {𝐴,𝐵,… ,𝑍} равновероятно.
Пусть

𝑊 = CSSPACECSSPACECSSPACECSSPACECS.
Обозначимчерез 𝜏 математическоеожиданиечисланапечатанныхбукв
до первого появления слова 𝑊 как непрерывного фрагмента напеча-
танной строки.

Доказательство. Пусть печатается независимая равновероятная последова-
тельность буквиз алфавита размера 𝑞. Зафиксируемслово𝑊 длины𝑚иобо-
значим через 𝜏 математическое ожидание времени до первого появления
𝑊 .
Для 𝑡 ≥ 𝑚 положим

𝐼𝑡 = 1{𝑋𝑡−𝑚+1 …𝑋𝑡 = 𝑊},
а для 𝑡 < 𝑚 положим 𝐼𝑡 = 0. Пусть

𝑇 = min{𝑡 ≥ 1 ∶ 𝐼𝑡 = 1}.
Тогда 𝜏 = 𝔼[𝑇 ] и

𝑆𝑛 =
𝑛

∑
𝑡=1

𝐼𝑡.

По линейности математического ожидания

𝔼[𝑆𝑛] =
𝑛

∑
𝑡=𝑚

𝑞−𝑚 = (𝑛 −𝑚+ 1)𝑞−𝑚.

Назовем 𝑘 ∈ {1,… ,𝑚} границей слова𝑊 , если

𝑊1..𝑘 = 𝑊𝑚−𝑘+1..𝑚,
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и обозначим множество всех длин границ черезℬ.
Если 𝑇 = 𝑡, то дополнительные вхождения слова 𝑊 внутри отрезка [𝑡, 𝑡 +
𝑚−1] возможны только за счет перекрытий, соответствующих границам 𝑘 ∈
ℬ. Дляфиксированного 𝑘 вероятность такого перекрывающегося вхождения
равна 𝑞−𝑘. Следовательно,

𝔼[
𝑇
∑
𝑡=1

𝐼𝑡] = ∑
𝑘∈ℬ

𝑞−𝑘.

С другой стороны,

𝔼[
𝑇
∑
𝑡=1

𝐼𝑡] = lim
𝑛→∞

𝔼[𝑆𝑛] = lim
𝑛→∞

(𝑛 −𝑚+ 1)𝑞−𝑚 = 𝜏
𝑞𝑚 .

Отсюда
𝜏 = ∑

𝑘∈ℬ
𝑞𝑘.

Для данного слова положим

𝑈 = CSSPACE, |𝑈| = 7,
тогда

𝑊 = 𝑈𝑈𝑈𝑈CS,
и

ℬ = {2, 9, 16, 23, 30}.
Следовательно,

𝜏 = 2630 + 2623 + 2616 + 269 + 262.

Задача 7 (Простые суммы двух). Сколько существует последовательно-
стей

(𝑎1, 𝑎2,… , 𝑎100),
где каждый элемент — натуральное число от 1 до 100, то есть

𝑎𝑖 ∈ {1, 2,… , 100},
и при этом для любых различных индексов 𝑖 ≠ 𝑗 сумма двух элементов
является простым числом:

𝑎𝑖 + 𝑎𝑗 — простое число для всех 1 ≤ 𝑖 < 𝑗 ≤ 100?
Требуется найти количество таких последовательностей.

8



Доказательство. Пусть (𝑎1,… , 𝑎100) удовлетворяет условию.
Если 𝑎𝑖 = 𝑎𝑗 = 𝑥 при 𝑖 ≠ 𝑗, то 2𝑥 простое, откуда 𝑥 = 1. Следовательно, любое
значение, отличное от 1, встречается не более одного раза.
Если существуют два различных индекса 𝑖 ≠ 𝑗 такие, что 𝑎𝑖 ≠ 1 и 𝑎𝑗 ≠ 1, то
𝑎𝑖+𝑎𝑗 чётноинеменьше 4, значитнепростое.Противоречие. Следовательно,
существует не более одного элемента, отличного от 1.
Пусть 𝑎𝑘 = 𝑥 ≠ 1, остальные элементы равны 1. Тогда необходимо и доста-
точно, чтобы 1 + 𝑥 было простым. Это возможно тогда и только тогда, когда

𝑥 = 𝑝 − 1,
где 𝑝— простое число из отрезка [3, 101]. Таких простых 25.
Подсчет. Существует одна последовательность (1,… , 1). Для каждого допу-
стимого 𝑥 и каждого выбора позиции 𝑘 получаем допустимую последова-
тельность. Поэтому общее число равно

1 + 100 ⋅ 25 = 2501.

Задача 8 (Перевернутый многочлен). Пусть

𝑃(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎1000𝑥1000

—многочлен степени 1000 с условиями 𝑎0 = 𝑎1000 = 1.
Определим перевёрнутый многочлен

rev(𝑃 )(𝑥) = 𝑥1000𝑃(1
𝑥) = 𝑎1000 + 𝑎999𝑥 + ⋯+ 𝑎0𝑥1000.

Рассмотрим многочлен

𝑄(𝑥) = 𝑃(𝑥) + rev(𝑃 )(𝑥).
Известно, что все корни многочлена𝑄(𝑥) вещественные и учитываются
с кратностями.
Найти наименьшее возможное значение суммы модулей всех корней
𝑄(𝑥):

1000
∑
𝑖=1

|𝑟𝑖|,

где 𝑟1,… , 𝑟1000 — корни𝑄(𝑥) с учётом кратностей.

Доказательство. Многочлен

𝑄(𝑥) = 𝑃(𝑥) + 𝑥1000𝑃(1/𝑥)
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удовлетворяет равенству

𝑥1000𝑄(1/𝑥) = 𝑄(𝑥).
Следовательно, если 𝑟— корень𝑄(𝑥), то 1/𝑟 также корень той же кратности.
Так как все корни вещественные, они разбиваются на 500 пар (𝑟, 1/𝑟).
Для каждой пары выполняется

|𝑟| + ∣1𝑟 ∣ ≥ 2,

откуда
1000
∑
𝑖=1

|𝑟𝑖| ≥ 500 ⋅ 2 = 1000.

Равенство достигается, если |𝑟| = 1 для всех корней. Возьмем
𝑃(𝑥) = (𝑥 + 1)1000.

Тогда 𝑎0 = 𝑎1000 = 1, rev(𝑃 ) = 𝑃 , и
𝑄(𝑥) = 2(𝑥 + 1)1000.

Все корни равны−1 с суммарной кратностью 1000, поэтому
1000
∑
𝑖=1

|𝑟𝑖| = 1000.

Минимальное возможное значение равно 1000.
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Задача 9 (Замощения прямоугольника). Прямоугольник размера 7 ×
8, разбитый на единичные клетки, требуется полностью разрезать на
непересекающиеся фигуры следующих типов:

1. 𝑋-пентамино—фигура из 5 клеток, состоящая из одной централь-
нойклеткиичетырёх клеток, примыкающихкнейпосторонам (кре-
стообразная форма).

2. 𝐿-тетрамино—фигура из 4 клеток, соединённых по сторонам и об-
разующих букву «𝐿». Эту фигуру разрешено поворачивать и пере-
ворачивать.

3. Одиночные клетки—фигуры размера 1 × 1.
Обозначим:

• 𝑥— количество использованных𝑋-пентамино,

• 𝑙— количество использованных 𝐿-тетрамино,
• 𝑠— количество одиночных клеток.

Требуется разрезать прямоугольник без перекрытий и пропусков так,
чтобы величина

𝑙 + 𝑠
была минимальной.

Доказательство. Ответ равен 8. Пример разбиения с 𝑥 = 6, 𝑙 = 6, 𝑠 = 2
изображен на рисунке, поэтому 𝑙 + 𝑠 = 8 достижимо.
Докажем, что меньше нельзя. Всегда 5𝑥+4𝑙+ 𝑠 = 56, то есть 4𝑙+ 𝑠 = 56−5𝑥.
Оценим 𝑥. Рассмотрим каёмку толщины 1: на ней 26 клеток, внутри 30 клеток.
Центр креста неможет лежать на каёмке. На каждой из четырех сторон каём-
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ки кресты могут занимать не более 2 клеток (иначе два креста пересекутся),
значит на всей каёмке кресты занимают не более 8 клеток. Тогда внутри кре-
сты занимают не менее 5𝑥 − 8 клеток, откуда 5𝑥 − 8 ≤ 30 и 𝑥 ≤ 7.
Исключим 𝑥 = 7. Тогда 4𝑙 + 𝑠 = 21. Чтобы иметь 𝑙 + 𝑠 ≤ 7, необходимо 𝑙 ≥ 5,
а так как 4𝑙 ≤ 21, получаем 𝑙 = 5 и 𝑠 = 1.
В шахматной раскраске каждое 𝐿-тетрамино покрывает 2 черных и 2 белых
клетки, значит вклад всех 𝐿 равен 0 в разность Δ = #черных − #белых.
Каждый крест дает вклад ±3, каждая одиночная клетка дает вклад ±1. Так
как у доскиΔ = 0, получаем

3(𝜀1 +⋯+ 𝜀𝑥) + (𝜎1 +⋯+ 𝜎𝑠) = 0
при 𝜀𝑖 ∈ {+1,−1}, 𝜎𝑗 ∈ {+1,−1}. Отсюда 𝜎1 + ⋯ + 𝜎𝑠 делится на 3, а значит
𝑠 нечётно влечет 𝜎1 + ⋯ + 𝜎𝑠 нечётно, что невозможно при 𝑥 = 7, потому
что левая часть тогда равна сумме числа, кратного 3, и нечётного числа. В
частности, при 𝑠 = 1 имеем 𝜎1 = ±1, и равенство невозможно. Значит 𝑥 ≠ 7,
следовательно 𝑥 ≤ 6.
Если 𝑥 = 6, то 4𝑙 + 𝑠 = 26, откуда 𝑙 ≤ 6 и 𝑙 + 𝑠 ≥ 6 + 2 = 8.
Если 𝑥 ≤ 5, то 4𝑙 + 𝑠 = 56 − 5𝑥 ≥ 31, поэтому 𝑙 + 𝑠 ≥ ⌈31

4 ⌉ = 8.
Итак, 𝑙 + 𝑠 ≥ 8 во всех случаях и 8 достигается, значит минимум равен 8.

Задача 10 (Волшебник Алексей). На шахматной доске 𝑛 × 𝑛 стоит 𝑛 ла-
дей так, что никакие две не бьют друг друга (то есть в каждой строке и в
каждом столбце стоит ровно одна ладья).
ВолшебникАлексейпревратил всех ладейв верблюдов. Верблюд ходит
прыжком на (1, 3): из клетки (𝑥, 𝑦) он может попасть в одну из клеток
(𝑥 ± 1, 𝑦 ± 3) или (𝑥 ± 3, 𝑦 ± 1) (если она существует на доске).
Каждый верблюд делает ровно один ход. После этого волшебник Алек-
сей превращает всех верблюдов обратно в ладей. Оказалось, что ладьи
снова стоят правильно (то есть снова по одной в каждой строке и каж-
дом столбце).
При каких 𝑛 это возможно?

Доказательство. Если 𝑛 ≤ 3, то хода верблюда (1, 3) на доске нет, значит
условие невыполнимо.
Далее считаем 𝑛 ≥ 4. Каждый ход верблюда меняет номер строки на 1 или
3, то есть меняет чётность строки. Значит после хода количество фигур на
чётных строках станет равным количеству фигур, которые были на нечётных
строках, и наоборот.
Если𝑛 нечётно, то на доске𝑛×𝑛 нечётных строк на одну больше, чем чётных,
поэтому исходно ладей на нечётных строках больше, чем на чётных, а после
хода наоборот. Это невозможно, так как после превращения обратно в ладьи
снова должна быть ровно одна ладья в каждой строке. Значит при нечётном
𝑛 невозможно.
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Пусть 𝑛 чётно и 𝑛 ≥ 4. Достаточно дать конструкции для 𝑛 = 4 и 𝑛 = 6 и
показать шаг 𝑛 → 𝑛 + 4.
Для 𝑛 = 4 и 𝑛 = 6 примеры расстановок и ходов заданы на рисунках.
Если конструкция существует для 𝑛, то для 𝑛 + 4 оставим ее в левом верх-
нем углу 𝑛×𝑛, а в правом нижнем углу 4× 4 добавим фиксированный блок-
рисунок для 𝑛 = 4 (в нём верблюды ходят, не выходя из этого блока). Тогда в
каждой новой строке и новом столбце ровно одна ладья, и после ходов это
свойство сохраняется. Следовательно, конструкция существует для всех чёт-
ных 𝑛 ≥ 4.
Итак, это возможно тогда и только тогда, когда 𝑛 чётно и 𝑛 ≥ 4.
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