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MoTnBauna

CucTemaTusnpoBaTb 3HaHMA B ob6nacTu video

[To3HAKOMWUTb NKOAEN C Pa3NNYHbIMK
3agayamu

[MoAroTOBUTb CyLIATENEl K NPaKTUYECKUM
NPUMEHEHUAM anropuTMoB video processing



ITnaH

»  0630p Video-based 3agau

HekoTopble 13 video 3agad. O6¢cyxaeHune,
KaK OHM peLLarTcA

»  Re-ldentification
YTo Takoe 3agaya re-identification, Kakue
eCTb NoAXoAbl pel.IJeHI/IFI

»  Object TrackKing

PaccmMoOTpeHne anroputmoB peLleHunsa
3aJa4u object-tracking
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[MpoOnembl

= CtaHpapTHble FPS: 24, 30

= SD Buaeo (640x480)
3aHnmaeT ~ 1.5GB Ha 1 MuHyTY

= PelleHune:

* |Acnonb30BaTb MeHbLUEE Pa3peLlEHNE
(06bIYHO 112x112)

= MeHbwwuin FPS (5-10)

= PaboTaTb C KOPOTKUMM KNUMaAMMU



Action Classification

= Bxopa:. Bupgeo, 3-5 ceKyHa

= Bbixof: pacnpeaeneHe BepoaTHOCTEN Mo
MHOMECTBY AeNCTBUN
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Late Fusion

Jumping
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[Mpobnema: CNnoXHO ynaBnmBaTb
nokanbHble nameHeHusa low-level
NPU3HAKOB
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Early Fusion

Tx3xHxW

Jumping
N

CNN

3TxHxW I |

Concatenation
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Early Fusion

Tx3xHxW

Jumping
N

CNN

3TxHxW I |

Concatenation

[Mpobnema: Bca temporal arperaumg
NpoucxoauT Ha 1m cnoe
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3D-CNN. Slow Fusion

conv3d.weight.shape:

3D CNN (C_out, C_in, K_t, K_h, K_w)

convad -> conv3d
pool2d -> pool3d

Tx3xHxXW | |
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Early Fusion. Example

Input: C_inx TXHXW

Output: C_out x H'x W'

Single Kernel: C_in Tx3x 3
# of Kernels: C_out

H=112 H'

W=112 '




Early Fusion. Temporal Shift-Invariance

16

H=112

W=112
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3D-CNN. Example

Input: C_inxTxHXW
OQutput: C_outx T'x H'x W'

Single Kernel: C_inx3x3x 3
# of Kernels: C_out

A

H =112 H!

W =112 T W




3D-CNN. Temporal Shift-Invariance

16

H=112

W=112
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Layer Size
Input 3x16x112x 112
Convl (3x3x3) 64 x16x112x112
Pooll (1x2x2) 64x16x56x56
T | Conv2 (3x3x3) 128 x 16 x 56 x 56
W g 0 Pool2 (2x2x2) 128 x 8 x 28 x 28
Conv3a (3x3x3) 256 x8x28x28
Conv3b (3x3x3) 256 x8x28x 28
Pool3 (2x2x2) 256x4x14x 14
Conv4a (3x3x3) 512x4x14x 14
Conv4b (3x3x3) 512x4x14x14
Pool4 (2x2x2) 512x2x7x7
Conv5a (3x3x3) 512x2x7x7
Conv5b (3x3x3) 512x2x7x7

Pool5 512x1x3x3
FC6 4096
FC7 4096

FC8 C
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Sports-1M benchmark

Sports-1M Top-5 Accuracy
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Sports-1M benchmark

Sports-1M Top-5 Accuracy
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Inflating 2D to 3D

" Aneq: B3aTtb 2d apxXuTeKkTypy U 3aMEHUTH
Bce 2d cBEePTKMU U NyNuHru Ha 3d aHanoru

= TaK¥Xe MOXHO nepencnosib3oBaTb BECA

= KonupoBaTb Beca CBEPTKU T pa3
(temporal dimension)

= HopmanusoBaTb NojlydyeHHblin 3D
TEH30p: pa3aenntb BecaHa T
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Nonlocal block

zﬁ TxHxWx 1024

I1x1x1
TxHxWx512

Soﬁmax 7HWX512
THWxTHW
_,®<7
THWx512 512xTHW THWx512
TxHxWx512| TxHxWx512 ITxHxWx512
0: 1x1x1 ¢: 1x1x1 g: I1x1x1
| TxHxWx 1024
X

6 — queries

o — keys

g — values

Ecnu nHnymnann3opoBaTb MNOCEAHION
CBEPTKY HYNSMU, TO BECb ONOK OyaeT
|dentity (n3-3a residual connection). T.o.
MOXHO BCTaBUTb B Y}Ke CYLLECTBYHOLLYIO
APXUTEKTYPY
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Multiview Transformes

( MLP Head ]—b Class

T

[ Global Encoder ]
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Multiview Transformes

Action Classification on Kinetics-400

Leaderboard Dataset
100
95
(Vg
®
O
= TSN
90
85
Jul '16 Jan '17

Jul '17

13D + NL

Jan '18

4)

View | Acc@5 v | by | Date v for | All models

MTV-H (WTS 60M)
CoVeR (JEI=3B)
Swin-L (384x384, ImgueNet=2+K"pretraim
ViViT-L/16%x2" | MTV-H (WTS 60M): 98.300
ip-CSN-152 (IG-65M pretraining)

SlowFast 16x8y(ResNet-101)

Jul '18 Jan '19 Jul '19 Jan 20 Jul 20 Jan 21 Jul '21 Jan '22 Jul '22

Other models Models with highest Acc@5
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Temporal Action

= Bxop: JnuHHOe BUAeo (=5 ceKyHa)

= 3apaya: And Kaxaoro AerncTBuAa Ha BUOeo
HaMTW Hayano 1 KoHeLl gencTBud
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LSTM
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| | | |

> > >

/ CI:IN\ / CIIIN\
S f

icnonb3oBaTb CNN B KauecTBe

9KCTpaKTopa, o0yyaTb TONbKO LSTM
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Recurrent Convolutional Network

Layer 3 >

Layer 2

>

Layer 1
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Recurrent Convolutional Network

Layer 3

Layer 2

>

>

herq = tanh(Wphy + Wyxy)

Linear — Convolution
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Faster RCNN

4 Dunk Background Dunk §

a Person  Bike Background E DNN Classifier i 2 3 2 3

DNN Classifier 4 3 %

g 3
L ~ & &7 _
, Sol Pooling

, l Rol Pooling Segment Y
Region Proposals ‘
Proposal%7 // FIIIIE AW
LF '
B— Segment
i 74 ‘ Proposal \
/47 / Network , e
AR AW

t 2D or 3D ConvNet

Y a4 1 2D ConvNet

—
. AR \ulti-scale
Multi-scale ‘ Input Image Anchor
Anchor Boxes

—
VIR Segments

Input Frame Sequence



PeKan n ona
aanbHeuwero
n3y4yeHuna
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https://towardsdatascience.com/introduction-to-video-classification-6c6acbc57356
https://arxiv.org/abs/1511.06432
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/42455.pdf
https://www.dbs.ifi.lmu.de/~yu_k/icml2010_3dcnn.pdf
https://arxiv.org/pdf/1412.0767.pdf
https://arxiv.org/pdf/1705.07750v3.pdf

PeKan n ona
aanbHeuwero
n3y4yeHuna
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https://arxiv.org/pdf/1711.07971.pdf
https://arxiv.org/pdf/2201.04288v4.pdf

PeKan n ona
aanbHeuwero
n3y4yeHuna
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https://towardsdatascience.com/introduction-to-video-classification-6c6acbc57356
https://towardsdatascience.com/long-term-recurrent-convolutional-network-for-video-regression-12138f8b4713
Delving%20Deeper%20into%20Convolutional%20Networks%20for%20Learning%20Video%20Representations
https://arxiv.org/pdf/1804.07667.pdf

PeKan n ona
aanbHeuwero
n3y4yeHuna
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https://arxiv.org/pdf/1812.03982.pdf
https://arxiv.org/abs/1406.2199
https://arxiv.org/abs/1705.02953
https://arxiv.org/pdf/2203.12602v2.pdf

Re-ldentification
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Metric Learning

3a4a4a: BblyYUTb PENPE3EHTALUN N300PAKEHNA
TaKum 00pa3om, YTO NOXOXKKMe N300parKeHua oyayT
ONN3KK B NPOCTPAHCTBE NPeAcTaBIEHU.
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MeTpukn

= Accuracy@k

= Recall@k

................

Gallery = PreCiSion@k
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Triplet Loss

LEARNING
A(;give
Anchor
Anchor

Positive

Positive

Negative
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Triplet Loss

= fo(x): R - RP
= D(x,y): RPXRP? - R
" D (fe(xi):fH(xj)) = |fo(x;) — fe(xj)\%

" £ —_ Za,p’n: ya:ypq‘:yn[o)m + Da,p o Da,n]+

" Mining hard triplets

N
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Center LOSS

(a) softmax loss

(b) center loss

1$B 2
" L = =), i . — Cy,
Center 5 ~j=1 |ft] yijl2
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Centroids in Image Retrieval

M. Wieczorek et al.

Backbone CNN Centroid Triplet Loss
; : Used for
1x1 conv, 64 “ ] — | | - centroid-based
BN, 64 Calculate [ >SS Calculate | W
T centroids ! | centroids I~
. - | I_: T — | ]
3x3 conv, 64 Global B e — | i ¥ ‘
~ Avg. Pool. i % ¥ .:_ .........................................
ReLU f::> i B : {BatchNorm| i~ '
' e st | 16 ' g
1x1 conv, 256 | . . _ | 5
BN, 256 = . : ' : i > g 5. Classification
| | — . S Loss
l Doﬁoooooooooool : :—.‘ 1 '2:.
RelU e ] --------------------- Used for E
I” ) I » Center Loss . instance-level

» Triplet Loss “._ inference stage

--------------------------------------------




ArcLoss

n W E Rfeathclass

W, |5 =1
= Wi'x; = |W, ;|5 |x;]5 cos(6;)
(a) Softmax (b) ArcFace = ‘X‘Z =S
./ _2 _1 . log es(cos(eyi+m))
N ~i=1 es(cos(eyi+ ‘m))_l_ Z?zl’jii es*cos(ey]')
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PeKan
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https://arxiv.org/pdf/1703.07737v4.pdf
http://ydwen.github.io/papers/WenECCV16.pdf
https://arxiv.org/pdf/2104.13643v1.pdf
https://arxiv.org/pdf/1801.07698v3.pdf
https://arxiv.org/pdf/1812.00442v1.pdf

Object Tracking
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MeTpuKkn

= MOTA - Multi-object tracking accuracy

- MOTA — 1 Zt(mt-l_ fpt-l_ mmet)
2.t It

= MOTP - Multi-object tracking precision
Dit d}
Dt Ct

= MT - mostly tracked trajectories

= MOTP =

= ML - mostly lost trajectories

= |[Dsw — number of times an ID switches to a
different previously tracked object

arxiv
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https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1155/2008/246309.pdf

Analytical Solutions

Ipip install opencv-contrib-python
Import cv2

OPENCV_OBIJECT _TRACKERS = {
"csrt": cv2.legacy.TrackerCSRT create, # best accuracy
"kef": cv2.legacy. TrackerKCF create,
"boosting": cv2.legacy.TrackerBoosting create,
"mil": cv2.legacy.TrackerMIL_create,
"tld": cv2.legacy.TrackerTLD_create,
"medianflow": cv2.legacy.TrackerMedianFlow create,
"mosse": cv2.legacy.TrackerMOSSE_create
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SIMPLE ONLINE AND REALTIME TRACKING

Alex Bewley', Zongyuan Ge', Lionel Ot®, Fabio Ramos®, Ben Upcroft’

Queensland University of Technology’, University of Sydney®

ABSTRACT

This paper explores a pragmatic approach to multiple ob-
ject tracking where the main focus is to associate objects ef-
ficiently for online and realtime applications. To this end, de-
tection quality is identified as a key factor influencing track-
ing performance, where changing the detector can improve
tracking by up to 18.9%. Despite only using a rudimentary
combination of familiar techniques such as the Kalman Filter
and Hungarian algorithm for the tracking components, this
approach achieves an accuracy comparable to state-of-the-art
online trackers. Furthermore. due to the simplicity of our
tracking method. the tracker updates at a rate of 260 Hz which
is over 20x faster than other state-of-the-art trackers.

Index Terms— Computer Vision, Multiple Object Track-
ing, Detection, Data Association

1. INTRODUCTION

This paper presents a lean implementation of a tracking-by-
detection framework for the problem of multiple object track-
ing (MOT) where objects are detected cach frame and repre-
sented as bounding boxes. In contrast to many batch based
tracking approaches [1, 2.3, this work is primarily targeted
towards online tracking where only detections from the pre-
vious and the current frame are presented to the tracker. Ad-
ditionally, a strong emphasis is placed on efficiency for fa-
cilitating realtime tracking and to promote greater uptake in
applications such as pedestrian tracking for autonomous ve-
hicles.

The MOT problem can be viewed as a data associa-
tion problem where the aim is to associate detections across
frames in a video sequence. To aid the data association pro-
cess, trackers use various methods for modelling the motion
[1] 4] and appecarance [5) 3] of objects in the scene. The
methods employed by this paper were motivated through
obscrvations made on a recently established visual MOT
benchmark [6]. Firstly, there is a resurgence of mature data
association techniques including Multiple Hypothesis Track-
ing (MHT) [7, 3] and Joint Probabilistic Data Association
(JPDA) 2] which occupy many of the top positions of the
MOT benchmark. Secondly, the only tracker that does not
use the Aggregate Channel Filter (ACF) [8] detector is also

Thanks to ACARP for funding.

Accuracy vs. Speed

® Proposed
*
100 F 3 .
§ T Realtime &
3
£ 10} B
7 #
A
1 - A E
15 20 25 30 35
Accuracy (MOTA)
B TDAM @ LP2D ATBD $.rDA

W NOMT @DP.NMS A SMOT # SORT
MDP TC.ODAL © MHT_DAM

Fig. 1. Benchmark performance of the proposed method
(SORT) in relation to several baseline trackers [6]. Each
marker indicates a trackers accuracy and speed measured in
frames per second (FPS) [Hz], i.e. higher and more night is
better.

the top ranked tracker, suggesting that detection guality could
be holding back the other trackers. Furthermore, the trade-off
between accuracy and speed appears quite pronounced, since
the speed of most accurate trackers is considered too slow for
realtime applications (see Fig. [I). With the prominence of
traditional data association techniques among the top online
and batch trackers along with the use of different detections
used by the top tracker, this work explores how simple MOT
can be and how well it can perform.

Keeping in line with Occam’s Razor, appearance features
beyond the detection component are ignored in tracking and
only the bounding box position and size are used for both mo-
tion estimation and data association. Furthermore, issucs re-
garding short-term and long-term occlusion are also ignored,
as they occur very rarely and their explicit treatment intro-

= Kalman Filter

= Hungarian Algorithm

kalman filter explained

hungarian algorithm explained
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https://www.youtube.com/playlist?list=PLX2gX-ftPVXU3oUFNATxGXY90AULiqnWT
https://brilliant.org/wiki/hungarian-matching/
https://arxiv.org/pdf/1602.00763.pdf
https://github.com/abewley/sort
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DeepSort

SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC

Nicolai Wojke', Alex Bewley®, Dietrich Paulus'

University of Koblenz-Landau’, Queensland University of Technology®

ABSTRACT

Simple Online and Realtime Tracking (SORT) is a pragmatic
approach to multiple object tracking with a focus on simple,
effective algorithms. In this paper, we integrate appearance
information to improve the performance of SORT. Due to this
extension we are able to track objects through longer peri-
ods of occlusions, effectively reducing the number of identity
switches. In spirit of the original framework we place much
of the computational complexity into an offline pre-training
stage where we learn a deep association metric on a large-
scale person re-identification dataset. During online appli-
cation, we establish measurement-to-track associations using
nearest neighbor queries in visual appearance space. Experi-
mental evaluation shows that our extensions reduce the num-
ber of identity switches by 45%, achieving overall competi-
tive performance at high frame rates.

Index Terms— Computer Vision, Multiple Object Track-
ing, Data Association

1. INTRODUCTION

Due to recent progress in object detection, tracking-by-
detection has become the leading paradigm in multiple object
tracking. Within this paradigm, object trajectories are usually
found in a global optimization problem that processes entire
video batches at once. For example, flow network formula-
tions [1. 2, 3] and probabilistic graphical models [4, 5. 6. 7]
have become popular frameworks of this type. However,
due to batch processing, these methods are not applicable
in online scenarios where a target identity must be available
at each time step. More traditional methods are Multiple
Hypothesis Tracking (MHT) [8] and the Joint Probabilistic
Data Association Filter (JPDAF) [9]. These methods perform
data association on a frame-by-frame basis. In the JPDAF,
a single state hypothesis is generated by weighting individ-
ual measurements by their association likelihoods. In MHT,
all possible hypotheses are tracked, but pruning schemes
must be applied for computational tractability. Both meth-
ods have recently been revisited in a tracking-by-detection
scenario [10, 11] and shown promising results. However, the
performance of these methods comes at increased computa-
tional and implementation complexity.

Simple online and realtime tracking (SORT) [12] is a

Fig. 1: Exemplary output of our method on the MOT chal-
lenge dataset [15] in a common tracking situation with fre-
quent occlusion.

much simpler framework that performs Kalman filtering in
image space and frame-by-frame data association using the
Hungarian method with an association metric that measures
bounding box overlap. This simple approach achieves favor-
able performance at high frame rates. On the MOT challenge
dataset [13], SORT with a state-of-the-art people detector [14]
ranks on average higher than MHT on standard detections.
This not only underlines the influence of object detector per-
formance on overall tracking results, but is also an important
insight from a practitioners point of view.

While achieving overall good performance in terms of
tracking precision and accuracy, SORT returns a relatively
high number of identity switches. This is, because the em-
ployed association metric is only accurate when state esti-
mation uncertainty is low. Therefore, SORT has a deficiency
in tracking through occlusions as they typically appear in
frontal-view camera scenes. We overcome this issue by re-
placing the association metric with a more informed metric
that combines motion and appearance information. In par-
ticular, we apply a convolutional neural network (CNN) that
has been trained to discriminate pedestrians on a large-scale
person re-identification dataset. Through integration of this
network we increase robustness against misses and occlusions
while keeping the system easy to implement, efficient, and
applicable to online scenarios. Our code and a pre-trained
CNN model are made publicly available to facilitate research
experimentation and practical application development.

= Kalman Filter
= Hungarian Algorithm
= Deep Appearance Descriptor

= Matching Cascade
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https://arxiv.org/abs/1703.07402
https://github.com/nwojke/deep_sort

Ha3sBaHue

CpaBHeHune metonos (Online)

POI

DeepSort

MOTA MOTP IDsw Runtime
592.5 78.8 910 12Hz
66.1 79.9 805 10Hz
59.8 79.6 1423 60Hz
61.4 79.1 781 40Hz
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ByteTrack: Multi-Object Tracking by Associating Every Detection Box

Yifu Zhang', Peize Sun®, YilJiang®, Dongdong Yu®, Fucheng Weng®,

Zehuan Yuan®, Ping Luo?,

"Huazhong University of Science and Technology

Abstract

Multi-object tracking (MOT) aims at estimating bound-
ing boxes and identities of objects in videos. Most meth-
ods obtain identities by associating detection boxes whose
scores are higher than a threshold. The objects with low
detection scores, e.g. occluded objects, are simply thrown
away, which brings non-negligible true object missing and
fragmented trajectories. To solve this problem, we present
a simple, effective and generic association method, tracking
by associating almost every detection box instead of only
the high score ones. For the low score detection boxes, we
utilize their similarities with tracklets to recover true ob-
Jjects and filter out the background detections. When ap-
plied to 9 different state-of-the-art trackers, our method
achieves consistent improvement on IDFI score ranging
from 1 to 10 points. To put forwards the state-of-the-
art performance of MOT, we design a simple and strong
tracker, named ByteTrack. For the first time, we achieve
80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set
of MOT17 with 30 FPS running speed on a single V100
GPU. ByteTrack also achieves state-of-the-art performance
on MOT20, HiEve and BDD100K tracking benchmarks.
The source code, pre-trained models with deploy versions
and tutorials of applying to other trackers are released at

3 e s/ /4 . shanca/RutaTrac~k
https://github.com/ifzhang/ByteTrack.

1. Introduction

Was verniinftig ist, das ist wirklich; und was wirklich ist,
das ist vernlinftig.
—— G. W. F. Hegel

Tracking-by-detection is the most effective paradigm for
multi-object tracking (MOT) in current. Due to the com-
plex scenarios in videos, detectors are prone to make im-
perfect predictions. State-of-the-art MOT methods [1-3, 6,
12, 18, 45,59, 70,72, 85] need to deal with true positive /

T Corresponding author.
Part of this work was performed while Yifu Zhang worked as an intern
at ByteDance.

Wenyu Liu', Xinggang Wang'’

“The University of Hong Kong  *ByteDance Inc.

ByteTrack
80.0
ReMOT = TransMOT o/ Tracker
775
75.0 TransTrack CSThpck o
TransCenter W FeirioT
725 SOTMOT
70.0
TraDes QuasiDense
67.5 Chained-Tracker  CenterTrack
65.0
Tube TK
625
0 5 10 15 20 25 30 35

FPS

Figure 1. MOTA-IDF1-FPS comparisons of different trackers on
the test set of MOT17. The horizontal axis 1s FPS (running speed),
the vertical axis is MOTA, and the radius of circle is IDF1. Our
ByteTrack achieves 80.3 MOTA, 77.3 IDFI on MOT17 test set
with 30 FPS running speed, outperforming all previous trackers.
Details are given in Table 4.

false positive trade-off in detection boxes to eliminate low
confidence detection boxes [4,40]. However, is it the right
way to eliminate all low confidence detection boxes? Our
answer is NO: as Hegel said “What is reasonable is real;
that which is real is reasonable.” Low confidence detection
boxes sometimes indicate the existence of objects, e.g. the
occluded objects. Filtering out these objects causes irre-
versible errors for MOT and brings non-negligible missing
detection and fragmented trajectories.

Figure 2 (a) and (b) show this problem. In frame ¢,,
we initialize three different tracklets as their scores are
all higher than 0.5. However, in frame ¢, and frame 3
when occlusion happens, red tracklet’s corresponding de-
tection score becomes lower i.e. 0.8 to 0.4 and then 0.4 to

53


https://arxiv.org/pdf/2110.06864v3.pdf
https://github.com/ifzhang/ByteTrack

ByteTracK

Frame t,

Frame t,
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Ha3sBaHue

CpaBHeHune metoaoB (MOT17)

DeepSort

MOTA IDsw FPS
4.6 291 30.1
(5.4 239 13.5
76.6 159 29.6
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Noname manuscript No.
(will be inserted by the editor)

FairMOT: On the Fairness of Detection and Re-Identification in Multiple

Object Tracking

Yifu Zhang'’ - Chunyu Wang?! . Xinggang Wang'* - Wenjun Zeng” - Wenyu Liu'

Received: date / Accepted: date

Abstract Multi-object tracking (MOT) is an important prob-
lem in computer vision which has a wide range of applica-
tions. Formulating MOT as multi-task learning of object de-
tection and re-ID in a single network is appealing since it
allows joint optimization of the two tasks and enjoys high
computation efficiency. However, we find that the two tasks
tend to compete with each other which need to be carefully
addressed. In particular, previous works usually treat re-ID
as a secondary task whose accuracy 1s heavily affected by
the primary detection task. As a result, the network is bi-
ased to the primary detection task which is not fair to the
re-ID task. To solve the problem, we present a simple yet
effective approach termed as FairMOT based on the anchor-
free object detection architecture CenterNet. Note that it is
not a naive combination of CenterNet and re-ID. Instead,
we present a bunch of detailed designs which are critical to
achieve good tracking results by thorough empirical studies.
The resulting approach achieves high accuracy for both de-
tection and tracking. The approach outperforms the state-of-
the-art methods by a large margin on several public datasets.
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The source code and pre-trained models are released at hitps:
{lgithub.com/ifzhang/FairMOT.
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1 Introduction

Multi-Object Tracking (MOT) has been a longstanding goal
in computer vision (Bewley et al., 2016; Wojke et al., 2017;
Chen et al, 2018a; Yu et al., 2016). The goal is to est-
mate trajectories for objects of interest presented in videos.
The successful resolution of the problem can immediately
benefit many applications such as intelligent video analy-
sis, human computer interaction, human activity recognition
(Wang et al., 2013; Luo et al., 2017), and even social com-
puting.

Most of the existing methods such as (Mahmoudi et al.,
2019; Zhou et al., 2018; Fang et al., 2018; Bewley et al.,
2016; Wojke et al., 2017; Chen et al., 2018a; Yu et al., 2016)
attempt to address the problem by two separate models: the
detection model firstly detects objects of interest by bound-
ing boxes in each frame, then the association model extracts
re-identification (re-1D) features from the image regions cor-
responding to each bounding box. links the detection to one
of the existing tracks or creates a new track according to
certain metrics defined on features.

There has been remarkable progress on object detection
(Ren et al., 2015; He et al., 2017; Zhou et al., 2019a; Red-
mon and Farhadi, 2018; Fu et al., 2020; Sun et al., 2021b,a)
and re-ID (Zheng et al., 2017a; Chen et al., 2018a) respec-
tively recently which in turn boosts the overall tracking ac-
curacy. However, these two-step methods suffer from scala-
bility issues. They cannot achieve real-ime inference speed
when there are a large number of objects in the environment
because the two models do not share features and they need

= Unfairness cased by anchors

= Unfairness cased by features

= Unfairness cased by feature dimension
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Fig. 1 Overview of our one-shot tracker FairMOT. The input image is first fed to an encoder-decoder network to extract high resolution feature
maps (stride=4). Then we add two homogeneous branches for detecting objects and extracting re-ID features, respectively. The features at the
predicted object centers are used for tracking.
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