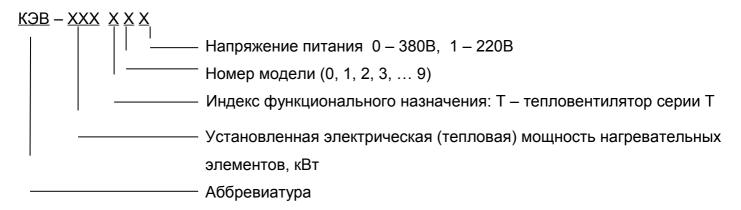


## ПАСПОРТ

## ТЕПЛОВЕНТИЛЯТОР КЭВ-Т

K9B-50T20, K9B-60T20, K9B-75T20, K9B-90T20, K9B-100T20




ТУ 3468-022-54365100-2005

Санкт- Петербург

Ваш тепловентилятор снабжен устройством защиты от перекоса и пропадания фаз.

# Убедительно просим Вас перед вводом изделия в эксплуатацию внимательно изучить данный паспорт!



#### 1. Назначение

Электротепловентиляторы КЭВ-50Т20, КЭВ-60Т20, КЭВ-75Т20, КЭВ-90Т20, КЭВ-100Т20 (далее тепловентилятор) предназначены для обогрева служебных, производственных, складских и других помещений, а также могут использоваться в системах кондиционирования и, по согласованию с изготовителем, в технологических сетях нагрева воздуха или газа.

#### 2. Условия эксплуатации

- 2.1 Температура окружающего воздуха, °C 40...+40
  2.2 Относительная влажность воздуха при
  температуре 20°С не более, % 80
  2.3 Содержание пыли и других примесей в воздухе
  не более. мг/м³ 10
- 2.4 Не допускается присутствие в воздухе веществ, агрессивных по отношению к углеродистым сталям (кислоты, щелочи), липких и горючих веществ, а также волокнистых материалов (смолы, технические волокна).
- 2.5 Тепловентиляторы предназначены для работы в помещениях, взрыво и пожароопасность которых определяется проектантом согласно НПБ 105-95, ПУЭ и других нормативных документов с учетом технических характеристик изделия, указанных в разделах 3-5 Паспорта.

#### 3. Технические характеристики

- 3.1. Технические характеристики представлены в табл. 1.
- 3.2 Класс защиты от поражения электротоком 1.
- 3.3 Степень защиты, обеспечиваемая оболочкой, IP21.
- 3.4 Климатическое исполнение УХЛ категории размещения 4.

3.5 Содержание драгоценных металлов зависит от комплектации.

При необходимости предприятие-изготовитель предоставляет сведения о их содержании.

#### 4. Устройство и порядок работы

4.1 Тепловентилятор представляет собой металлический корпус с установленными внутри трубчатыми электронагревателями (ТЭН) и осевым вентилятором. Воздух всасывается осевым вентилятором из помещения через заднюю решетку, продувается через пучок ТЭНов, нагревается и выбрасывается в помещение через переднюю решетку.

Таблица 1

| Модель тепловентилятора                    | _              | _                | КЭВ-<br>75Т20  | _                | КЭВ-<br>100Т20  |
|--------------------------------------------|----------------|------------------|----------------|------------------|-----------------|
| Параметры питающей сети, В/Гц              | 380/50         | 00120            | 1.0120         | 00120            | 1.00120         |
| Режимы мощности**, кВт                     |                | */25/50/6<br>2,5 | */25/50/7<br>5 | */50/75/8<br>7,5 | */50/75/1<br>00 |
| Расход воздуха, м³/час                     |                | 6000             | 6000           | 6000             | 6000            |
| Подогрев воздуха**, °С                     | 0/12/18/2<br>4 | 0/12/25/3<br>1   | 0/12/25/3<br>7 | 0/25/37/4<br>3   | 0/25/37/4<br>9  |
| Габаритные размеры, мм                     |                |                  |                |                  |                 |
| - ширина - высота                          | 700            | 700              | 700            | 700              | 700             |
| - длина                                    | 724            | 724              | 724            | 724              | 724             |
|                                            | 740            | 740              | 740            | 740              | 740             |
| Вес, кг                                    | 70             | 73               | 75             | 78               | 81              |
| Максимальный ток, А                        | 78             | 97               | 116            | 135              | 154             |
| Потребляемая мощность двигателя, Вт        | 780            | 780              | 780            | 780              | 780             |
| Частота вращения, об/мин                   | 1350           | 1350             | 1350           | 1350             | 1350            |
| Звуковое давление на расстоянии 5м, дБ (А) | 60             | 60               | 60             | 60               | 60              |

<sup>\*</sup> режим вентилятора

4.2 Управление тепловентилятором осуществляется двумя вращающимися ручками: роторного переключателя и терморегулятора, установленными на задней панели корпуса (см. рис. 1).

#### Внимание! Не прикладывать чрезмерных усилий при вращении ручек.

Ручка 1 роторного переключателя имеет пять положений:

- выключено;

- включение режима вентилятора;

- включение I –ой ступени тепловой мощности;

- включение II –ой ступени тепловой мощности;

- включение III –ой ступени тепловой мощности.

<sup>\*\*</sup> в соответствии с ГОСТ Р МЭК 335-1-94 при номинальном напряжении заданные параметры могут отличаться на +5/-10% от указанных.

Ручкой терморегулятора 2 устанавливается необходимая температура нагрева воздуха в помещении в диапазоне от +5 до +40°C. Терморегулятор управляет включенной мощностью.

- **4.3** Внимание! Для увеличения эксплуатационного срока службы рекомендуется перед выключением оставить тепловентилятор работать несколько минут в режиме вентилятора для снятия остаточного тепла ТЭНов.
- 4.4 Электрические схемы тепловентиляторов на рис. 2-6.
- 4.5 Тепловентилятор снабжен устройством аварийного отключения в случае перегрева корпуса. Перегрев может наступить от следующих причин:
  - входное и выходное окна тепловентилятора загромождены посторонними предметами (в том числе, сильное загрязнение):
  - тепловая мощность тепловентилятора сильно превышает теплопотери помещения, в котором он работает;
  - вышел из строя терморегулятор или вентилятор.
- 4.6 После остывания аварийно отключенного тепловентилятора, тепловентилятор остается в выключенном состоянии. Для его повторного включения необходимо выключить (перевести ручку роторного переключателя в положение ○- выключено) и включить тепловентилятор. Следует помнить, что повторное включение тепловентилятора при аварийном отключении возможно лишь после его остывания. При этом перед повторным включением следует выяснить причины, вызвавшие срабатывание аварийного датчика, устранить их и только после этого включить тепловентилятор.
- 4.7 Тепловентилятор снабжен устройством защиты от внештатной ситуации: механическое заклинивание пускателя при выключении изделия роторным переключателем. В этом случае тепловентилятор остается в режиме обдува невыключившихся ТЭНов. Следует обесточить тепловентилятор на силовом щите потребителя и заменить пускатель (см. раздел 10).
- 4.8 Тепловентилятор снабжен устройством защиты от перекоса и пропадания фаз.
- 4.9 Заводом-изготовителем могут быть внесены в изделие конструктивные изменения, не отраженные в настоящей инструкции, которые не ухудшают его качество и надежность.

#### 5. Указание мер безопасности

- 5.1 При эксплуатации тепловентилятора необходимо соблюдать правила технической эксплуатации электроустановок потребителей (ПТЭЭП) и межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ РМ-016-2001).
- 5.2 Работы по обслуживанию тепловентилятора должен проводить специально подготовленный электротехнический персонал.
- 5.3 Не допускается класть на тепловентилятор любые предметы, закрывать его шторами во избежание перегрева и возможного возгорания.

- 5.4 При срабатывании аварийного датчика необходимо выяснить причины, вызвавшие срабатывание, устранить их и только после этого осуществить повторное включение тепловентилятора.
- 5.5 Запрещается эксплуатация тепловентилятора без заземления. Болт заземления находится под верхней крышкой корпуса.
- 5.6 Запрещается проводить работы по обслуживанию тепловентиляторов без снятия напряжения и до полного остывания его нагревающих элементов.
- 5.7 Запрещается эксплуатировать в отсутствие персонала.
- 5.8 После выключения тепловентилятора ручкой роторного переключателя 1 (рис.1), тепловентилятор остается в «режиме ожидания». Для полного отключения необходимо обесточить тепловентилятор на силовом щите потребителя.

#### 6. Комплект поставки

6.1 Тепловентилятор 1 шт.

6.2 Паспорт 1 шт.

#### 7. Требования к установке и подключению

- 7.1 При установке, монтаже и запуске в эксплуатацию необходимо соблюдать правила технической эксплуатации электроустановок потребителей (ПТЭЭП) и межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ PM-016-2001).
- 7.2 К установке и монтажу тепловентиляторов допускается квалифицированный, специально подготовленный электротехнический персонал.
- 7.3 Перед подключением необходимо провести внешний осмотр на отсутствие механических повреждений и комплектность поставки.
- 7.4 Для подключения тепловентилятора к сети необходимо:
- снять верхнюю крышку, открутив 4 самореза,
- открутить гайку гермоввода,
- надеть гайку гермоввода на кабель и завести кабель в отверстие гермоввода,
- подключить кабель к клеммной колодке, подключить заземление. При этом концы жил обязательно **зачистить и облудить.**
- закрутить гайку гермоввода и одеть крышку.

Тепловентилятор необходимо подключать к электрической сети 380В, 50Гц через автоматический выключатель в соответствии со схемой на рис. 2-6 и табл. 3.

- 7.5 При пробном включении проверить направление вращения вентилятора. При необходимости изменения направления вращения вентилятора, поменять любые 2 фазных провода местами.
- 7.6 Запрещается использовать для заземления нулевой провод.

- 7.7 При вводе тепловентилятора в эксплуатацию (первое включение) происходит сгорание масла с поверхности ТЭНов с появлением дыма и характерного запаха. Поэтому рекомендуется перед монтажом включить тепловентилятор в режим обогрева на 20 минут в хорошо проветриваемом помещении.
- 7.8 Внимание! После транспортирования или хранения тепловентилятора при отрицательных температурах, следует выдержать тепловентилятор в помещении, где предполагается его эксплуатация, без включения в сеть не менее 2 часов.

#### 8. Контроль за работой вентилятора

- 8.1 Для контроля за работой тепловентилятора необходимо ежемесячно:
- осматривать тепловентилятор и ТЭНы;
- при необходимости очищать внутренние поверхности тепловентилятора от загрязнения и пыли;
- проверять электрические соединения тепловентилятора для выявления ослаблений, подгораний, окисления. Ослабления устранить, подгорания и окисления зачистить.
- 8.2 Перед выключением оставить тепловентилятор работать несколько минут в режиме вентилятора для снятия остаточного тепла ТЭНов (см. п.4.4).

#### 9. Транспортировка и хранение

- 9.1 При транспортировке не допускаются механические повреждения корпуса, нагревательных элементов, вентилятора.
- 9.2 При транспортировке и хранении не допускается попадание на корпус и элементы тепловентилятора атмосферных осадков.
- 9.3 Тепловентиляторы в упаковке изготовителя могут транспортироваться всеми видами крытого транспорта при температуре от минус 50°C до плюс 50°C и среднемесячной относительной влажности 80% (при температуре 20°C) в соответствии с манипуляционными знаками на упаковке с исключением ударов и перемещений внутри транспортного средства.

  9.4 Тепловентиляторы должны храниться в упаковке изготовителя в помещении от минус 50° до плюс 50°C и среднемесячной относительной влажности 80% (при температуре 20°C).

#### 10. Возможные неисправности и методы их устранения

Таблица 2

| Характер неисправности и ее внешнее<br>проявление | Вероятная причина | Метод устранения                        |
|---------------------------------------------------|-------------------|-----------------------------------------|
| Не включается вентилятор в тепловентиляторе       | 1 , ,             | Проверить<br>напряжение по фазам        |
|                                                   |                   | Проверить                               |
|                                                   |                   | целостность кабеля питания, неисправный |

|                                                                          |                                                               | заменить.                                                                            |
|--------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                                                          | Сработал датчик<br>аварийного<br>термовыключателя             | См. п.п. 4.5 - 4.6                                                                   |
| Не включается секция ТЭНов при включенном вентиляторе                    | Температура в помещении выше установленной на терморегуляторе | Изменить положение<br>терморегулятора<br>(если это необходимо)                       |
| Частое срабатывание датчика аварийного<br>отключения                     | (всасывающего окна)<br>или ее перекрытие                      | Проверить состояние<br>задней решетки,<br>очистить ее от пыли.<br>См. п.п. 4.5 - 4.6 |
| Тепловентилятор не отключается при<br>выключении роторным переключателем | роторный переключатель Заклинило пускатель                    | Проверить целостность роторного переключателя или заменить пускатель                 |

#### 11. Утилизация

11.1 Утилизация тепловентилятора после окончания срока эксплуатации не требует специальных мер безопасности и не представляет опасности для жизни, здоровья людей и окружающей среды.

#### 12. Гарантийные обязательства

- 12.1 Предприятие-изготовитель гарантирует надежную и бесперебойную работу тепловентилятора при соблюдении правил транспортировки, хранения, монтажа и эксплуатации в течение 12 месяцев со дня продажи, но не более 18 месяцев со дня изготовления.
- 12.2 В случае выхода изделия из строя в период гарантийного срока предприятиеизготовитель принимает претензии только при получении от заказчика технически обоснованного акта с указанием характера неисправности.
- 12.3 При самостоятельном внесении изменений в электрическую схему изделие снимается с гарантийного обслуживания.
- 12.4 Гарантийный и послегарантийный ремонт тепловентилятора осуществляется на заводеизготовителе по предъявлению гарантийного талона со штампом торговой организации и паспорта на изделие.

РЕКЛАМАЦИИ БЕЗ ТЕХНИЧЕСКОГО АКТА И ПАСПОРТА НА ИЗДЕЛИЕ, С ЗАПОЛНЕННЫМ СВИДЕТЕЛЬСТВОМ О ПОДКЛЮЧЕНИИ НЕ ПРИНИМАЮТСЯ!

| -11-                          | F                                     |                 | _                                     | _                            | КЭВ-<br>100Т20                                      |
|-------------------------------|---------------------------------------|-----------------|---------------------------------------|------------------------------|-----------------------------------------------------|
| •                             | 380B                                  | 380B            |                                       |                              | 380B                                                |
| Автоматический<br>выключатель | 1x63A+<br>2x25A                       | 2x63A+<br>1x25A | 3x63A                                 | 3x63A+<br>1x25A              | 4x63A                                               |
|                               | X1(5x6,0)+<br>X2(3x2,5)+X3(3<br>x2,5) |                 | X1(5x6,0)+<br>X2(3x6,0)+<br>X3(3x6,0) | X2(3x6,0)+<br>X3(3x2,5)+X4(3 | X1(5x6,0)+<br>X2(3x6,0)+<br>X3(3x6,0)+<br>X4(3x6,0) |

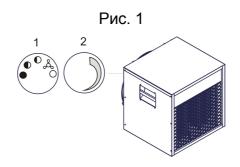



Рис. 2. Электрическая схема КЭВ-50Т20

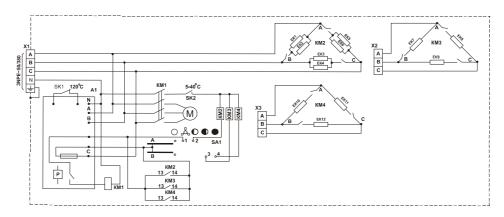



Рис. 3. Электрическая схема КЭВ-60Т20

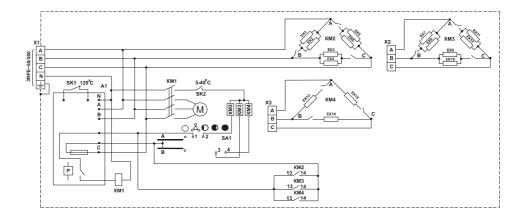



Рис. 4. Электрическая схема КЭВ-75Т20

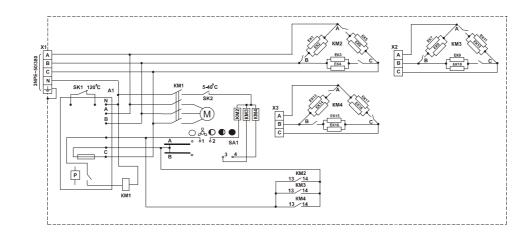
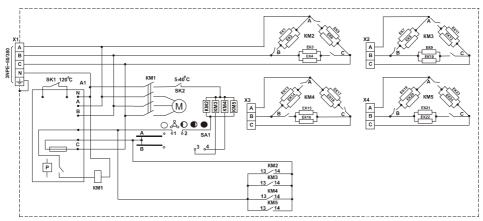




Рис. 5. Электрическая схема КЭВ-90Т20



Рис. 6. Электрическая схема КЭВ-100Т20



### 13. Свидетельство о приемке

| 13.1 Тепловентилятор КЭВ                          | T20                                           |  |  |
|---------------------------------------------------|-----------------------------------------------|--|--|
| заводской номер №                                 |                                               |  |  |
| изготовлен и принят в соответствии с треб         | бованиями ТУ3468-022-54365100-2005 и признан  |  |  |
| годным к эксплуатации. Тепловентилятор            | имеет сертификат соответствия № РОСС          |  |  |
| RU.ME05.B08695 от 09.12.2008, выданны             | й органом по сертификации электрических машин |  |  |
| трансформаторов, электрооборудования              | и приборов (АНО "НТЦ" ОС ЭЛМАТЭП")            |  |  |
| 13.2 Двигатель, установленный на тепловентилятор: |                                               |  |  |
| тип мошность                                      | кВт                                           |  |  |

| частота вращения об          | 5/мин, напряжение 380 В, частота тока 50Гц,   |
|------------------------------|-----------------------------------------------|
| заводской номер №            | ,                                             |
| Дата изготовления <u>"</u> " | 200 года. М.П<br>(подпись)                    |
| 14. Свидетельство о подкл    | лючении<br>1                                  |
| Тепловентилятор КЭВ          | T20_заводской номер №                         |
| подключен к сети в соответс  | твии с п.7 Паспорта                           |
| специалистом- электриком Ф   | Р.И.О.:                                       |
| имеющим                      | группу по электробезопасности, подтверждающий |
| документ                     |                                               |
| (подпись)                    | (дата)                                        |