Алгебра и теория чисел

Курс Жукова И. Б.

Осень 2021 г.

Примечание

Конспекты написаны полностью, но (скорее всего) с большим числом опечаток!

Оглавление

Oı	авление	ii
Ι	Алгебраические структуры	1
1	Множества	2
	1.1 Нотация	2
	1.2 Операции на множествах	3
	1.3 Отображение	3
	1.4 Композиция	5
	1.5 Тождественное отображение	5
2	Группы	7
	2.1 Введение	7
	2.2 Определение группы	8
	2.3 Подгруппы	9
	2.4 Таблицы Кэли	10
3	Отношения на множестве	12
II	Основы теории чисел	14
4	Делимость	15
	4.1 Свойства	15
5	Простые числа	17
6	НОД 3.1 Свойства	19 20 20
	3.3 Взаимно простые числа	

OI	ГЛАВЛЕНИЕ	iii
7	нок	23
8	Основная теорема арифметики	24
9	Сравнения по модулю 9.1 Свойства	27 27
10	Кольцо классов вычетов 10.1 Обратимые классы	30 32
11	Китайская теорема об остатках	35
12	Функция Эйлера	37
13	Теорема Эйлера 13.1 Алгоритм RSA	39 40
II	IKомплексные числа	41
14	Определение	42
15	Комплексное сопряжение и модуль 15.1 Геометрическое представление комплексного числа	44 46
16	Тригонометрическая форма комплексного числа	48
17	Корни из комплексных чисел	51

Часть I Алгебраические структуры

_{ГЛАВА} 1

Множества

1.1. Нотация

Стандартная запись:

$$A' = \{1, 3, 5, 7\}$$

$$A = \{1, 3, 5, ..., 99\}$$

Общий вид:

$$B = \{2,4,6,\ldots\} = \{2n: n \in \mathbb{N}\}$$

Стандартные числовые множества:

$$\begin{split} \mathbb{N} &= \{1,2,3,\ldots\} \qquad \mathbb{Z} = \{...,-1,0,1,2,\ldots\} \\ \mathbb{Q} &= \left\{\frac{p}{q}: p,q \in \mathbb{Z}, q \neq 0\right\} \qquad \mathbb{R}, \mathbb{C} \end{split}$$

Подмножества:

$$A' \subset A \subset \mathbb{N}, A' \not\subset B$$

$$C = \{1, 2, 3\} \quad \varnothing, \{1\}, \{2\}, \{3\}$$

$$\{1, 2\}, \{1, 3\}, \{2, 3\}$$

$$\{1, 2, 3\} = C$$

Предикат для подмножеств: $\{n \in \mathbb{N} : n < 5\} = \{1, 2, 3, 4\}$

1.2. Операции на множествах

Пусть A, B — множества

$$A \cap B = \{a \in A \land a \in B\}$$

$$A \cup B = \{a : a \in A \lor a \in B\}$$

$$A \setminus B = \{a \in A \land a \notin B\}$$

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

$$A \times B = \{(a,b) : a \in A, b \in B\}$$

$$\bigcap_{i=1}^{n} A_i \bigcup_{i=1}^{n} A_i$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Пример.

$$A = \{1,2,3\} \quad B = \{-1,1\}$$

$$A \times B = \{(1,-1),(1,1),(2,-1),(2,1),(3,-1),(3,1)\}$$

1.3. Отображение

A, B — множества

Определение 1.1. Задать отображение A в B, значит для каждого $a \in A$ задать некоторый элемент B (т.н. образ элемента A)

$$A = \{1, 2, 3, 4\}$$

$$B = \mathbb{R}$$

$$2 \quad 0$$

$$3 \quad 7^{5}$$

$$4 \quad 0$$

$$f : \mathbb{R} \to \mathbb{R}$$

$$f(a) = a - 3$$

$$\Leftrightarrow$$

$$f : \mathbb{R} \to \mathbb{R}$$

$$a \mapsto a - 3$$

$$\frac{a \mid f(a)}{1 \quad -2}$$

$$2 \quad -1$$

$$3 \quad 0$$

$$4 \quad 1$$

$$f: \mathbb{R} \to \mathbb{Z}$$

$$a \mapsto \begin{cases} 1, & a > 0 \\ 0, & a = 0 \\ -1, & a < 0 \end{cases}$$

$$\varphi: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto |\{m \in \mathbb{N}: m \leqslant n \& (m, n) = 1\}|$$

Определение 1.2. |M| = #M = Card M - мощность множества

Определение 1.3. 2^M — множество всех подмножеств M, его мощность $|2^M|=2^{|M|}$

Свойства

Свойство 1.1. $f: A \to B$ называется инъекцией, если

$$\forall a_1, a_2 \in A : a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$$

Свойство 1.2. $f: A \to B$ называется сюръекцией, если

$$\forall b \in B, \exists a \in A : f(a) = b$$

Свойство 1.3. $f:A\to B$ называется биекцией, если оно одновременно инъекция и сюръекция

Определение 1.4. Пусть $f:A\to B$, тогда $b\in B$ – полный прообраз b относительно f, если

$$f^{-1}(b) = \{a \in A : f(a) = b\}$$

Следствие 1.1. • f – инъекция $\Leftrightarrow \forall b \in B: |f^{-1}(b)| \leqslant 1$

- f сюръекция $\Leftrightarrow \forall b \in B : |f^{-1}(b)| \geqslant 1$
- f биекция $\Leftrightarrow \forall b \in B : |f^{-1}(b)| = 1$

Определение 1.5 (Сужение отображения). Пусть $f:A\to B$ и $A'\subset A$, тогда

$$f|_{A'}: A' \to B$$

 $a \mapsto f(a)$

Определение 1.6 (Образ подмножества). Пусть $f:A \to B$ и $M \subset A,$ тогда

$$f(M) = \{f(m) : m \in M\}$$
$$f(A) = \operatorname{Im} A$$

1.4. Композиция

Определение 1.7. Пусть $f: A \to B$ и $g: B \to C$, тогда

$$g \circ f : A \to C$$

 $a \mapsto q(f(a))$

— композиция f и g

Пример.

$$\begin{split} f,g:\mathbb{R} &\to \mathbb{R} \\ f(x) &= x+1 \\ g(x) &= 2x \\ g \circ f:\mathbb{R} &\to \mathbb{R} \qquad f \circ g:\mathbb{R} \to \mathbb{R} \\ x &\mapsto 2x+2 \qquad x \mapsto 2x+1 \end{split}$$

1.5. Тождественное отображение

Определение 1.8 (Тождественное отображение). Пусть M – множество

$$\mathrm{id}_M:M\to M$$

$$m\mapsto m$$

Определение 1.9 (Обратное отображение). Пусть $f: X \to Y$, тогда отображение $g: Y \to X$ называется обратным, если $g \circ f = \mathrm{id}_X, f \circ g = \mathrm{id}_Y$

Теорема 1.1. $Y f: X \to Y \ ecmb$ обратное $\Leftrightarrow f$ – биекция

Доказательство. Прямое доказательство: Зададим обратное отображение $g:Y\to X$, так что $g\circ f=\mathrm{id}_X$ и $f\circ g=\mathrm{id}_Y$. Тогда $\forall y\in Y$ верно

следующее:

$$g(y) = x f^{-1}(y) = \{x\}$$
$$(g \circ f)(x) = g(f(x)) = x$$
$$(f \circ g)(y) = f(g(y)) = y$$

Обратное доказательство: Если $g\circ f=\mathrm{id}_X$ верно, то и f – инъекция

$$f(x_1) = f(x_2) \implies g(f(x_1)) = g(f(x_2)) \implies x_1 = x_2$$

Если $f\circ g=\mathrm{id}_Y$ верно, то и f – сюръекция

$$y \in Y \implies \exists x \in X : f(x) = y \implies f(g(y)) = y$$

глава 2

Группы

2.1. Введение

Определение 2.1. Бинарная операция на множестве M – отображение из $M \times M \to M$

Примеры

- 1. +, -, · на \mathbb{Z}
- 2. + на векторном пространстве

3.
$$\begin{aligned} M &= X^X = \{f: X \to X\} \\ &(f,g) \mapsto f \circ g \\ &M \times M \mapsto M \end{aligned}$$

Свойства

Есть операция $M \times M \to M$, обозначим ее $(a, b) \mapsto a * b$

- 1. Если $\forall a, b \in M : a * b = b * a$, то * коммутативна
- 2. * ассоциативна, если $\forall a, b, c \in M : (a * b) * c = a * (b * c)$
- 3. $e \in M$ называется левым нейтральным, если $\forall a \in M: e*a=a$ $e \in M$ называется правым нейтральным, если $\forall a \in M: a*e=a$ $e \in M$ называется нейтральным, если он и левый, и правый нейтральный

¹В вычитании целых чисел ноль нейтрален справа

Лемма 2.1. Пусть * – операция, e_L, e_R – нейтральные слева и справа относительно *, тогда $e_L = e_R$.

Доказательство.

$$e_R = e_L * e_R = e_L$$

4. Пусть e нейтральный относительно $*, a \in M$. Элемент $b \in M$ называется обратным к a^2 , если b * a = a * b = e

Если $b*a=e\implies b$ обратный слева

Если $a*b=e\implies b$ обратный справа

Лемма 2.2. Ecnu*accouuamuвна u y a если левый и правый обратный, тогда они равны. <math>b*a=e, a*c=e

Доказательство.

$$(b*a)*c = b*(c*a)$$
$$e*c = b*e$$
$$c = b$$

Если * – ассоциативная операция, $m \in \mathbb{Z}$:

$$a^m = \begin{cases} a_1 * a_2 * \dots * a_m & m > 0 \\ e & m = 0 \\ a_1^{-1} * a_2^{-1} * \dots * a_{-m}^{-1} & m < 0 \end{cases}$$

$$a^m * a^n = a^{m+n} \qquad (a^m)^n = a^{mn}$$

2.2. Определение группы

Определение 2.2. Группой называется множества G с операцией *, такие что:

- 1. * ассоциативна
- 2. У * есть нейтральный элемент
- 3. У любого $g \in G$ есть обратный

Группа G называется абелевой (коммутативной), если * коммутативна

 $^{^2}$ Обратное к a обозначается a^{-1}

Примеры

- 1. $(\mathbb{Z}, +)$
- $2. (\mathbb{Q}, +), (\mathbb{R}, +)$
- 3. $(\mathbb{Q} \setminus \{0\}, \cdot), (\mathbb{R} \setminus \{0\}, \cdot)$
- 4. $(\{1,-1\},\cdot)^3$
- 5. (X^X, \cdot) не группа, при |X| > 1
- 6. $(S(X),\cdot),$ что $S(x)=\{f:x\to x:x$ биекция $\}$ группа, не абелева при |X|=2

2.3. Подгруппы

 Π ример. $(\mathbb{Z},+)$ – группа, $2\mathbb{Z}=\{2n:n\in\mathbb{Z}\}$ – подгруппа

Определение 2.3. G – группа, $H \subset G$ называется подгруппой, если:

- 1. H замкнуто относительно умножения, т.е. $\forall h_1, h_2 \in H: h_1h_2 \in H$
- $2. e \in H$
- 3. *H* замкнуто относительно обратного, т.е. $\forall h \in H : h^{-1} \in H$

Примеры

- $2\mathbb{Z} < \mathbb{Z}^4$
- $\{0\} < \mathbb{Z}$
- \bullet $\mathbb{Z} \in \mathbb{Q}$
- $(\{-1,1\},\cdot) < \mathbb{Q}^*$
- $\{2^n : n \in \mathbb{Z}\} < \mathbb{Q}^*$
- Группы самосовмещений (симметрий) фигур, Π плоскость, $S(\Pi)$, $T(\Pi) < S(\Pi)$ перемещения плоскости (движения)

^{31–4} абелевы группы

 $^{{}^4{\}rm B}$ данном контексте \subset и < означают одно и то же

10

Законы сокращения

Лемма 2.3. Пусть G - группа, $g,h_1,h_2\in G$

1.
$$gh_1 = gh_2 \implies h_1 = h_2$$

$$2. h_1g = h_2g \implies h_1 = h_2$$

Доказательство.

$$g^{-1}gh_1 = g^{-1}gh_2 \implies h_1 = h_2$$

2.4. Таблицы Кэли

Дана группа $G=\{g_1,g_2,\dots g_n\}$:

Дана группа $\mathbb{Z}^* = (\{\pm 1\}, \cdot)$:

$$\begin{array}{c|cccc} & 1 & -1 \\ \hline 1 & 1 & -1 \\ -1 & -1 & 1 \end{array}$$

Дана группа самосовмещений правильного прямоугольника 5 :

Группа абелева, т.к. симметрична относительно диагонали Рассмотрим $\mathbb{Z}^* \times \mathbb{Z}^* = \{(1,1),(1,-1),(-1,1),(-1,-1)\}$. Операции будем производить покомпонентно: (a,b)(a',b') = (aa',bb').

⁵Таблица Кэли является латинским квадратом

Последние 2 группы изоморфны (если заменить все элементы, например, буквами, то они и их таблицы Кэли будут идентичны) Теория групп изучает группы с точностью до изомфорфизма

Аксиома 2.1. Любые группы третьего порядка изоморфны.

С группами порядка 4 это уже не выполняется

Отношения на множестве

Определение 3.1. Отношения на множестве M – это подмножество в $M \times M$

Пример.
$$\leq$$
 на $\{1,2,3\}$ – $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$

Определение 3.2. R на M называется рефлексивным, если

$$\forall m \in M: (m,m) \in R$$

Определение 3.3. R на M называется симметричным, если

$$\forall m, n \in M : (m, n) \in R \implies (n, m) \in R$$

Определение 3.4. R на M называется антисимметричным, если

$$\forall m, n \in M : (m, n) \in R, (n, m) \in R \implies m = n$$

Определение 3.5. R на M называется транзитивным, если

$$\forall a, b \in M : (a, b) \in R, (b, c) \in R \implies (a, c) \in R$$

Определение 3.6. R называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Определение 3.7 (Класс эквивалентности). Пусть R — отношения эквивалентности на $M, a \in M$. Класс $[a] = \{b \in M : bRa\}^1$

 $^{^1}$ Будем использовать запись $(a,b) \in R = aRb$

Лемма 3.1.

$$\forall m, n \in M : [m] = [n] \text{ unu } [m] \cap [n] = \emptyset$$

Доказательство.

$$[m]\cap[n]\neq\varnothing$$

$$\exists l\in[m]\cap[n]\implies lRm, lRn\implies mRl\implies mRn$$

$$a\in[m]\implies aRm\implies aRn\implies a\in[n]$$
 Таким образом $[m]\subset[n]$. Аналогично $[n]\subset[m]\implies[m]=[n]$

Теорема 3.1. Пусть R отношение эквивалентности на множестве M, тогда $M=\bigcup_{i\in I}C_i$, т.ч. $C_i\cap C_j=\varnothing(i\neq j)$ и $mRn\Leftrightarrow m,n\in C_i$ для некоторого i.

Доказательство.

$$C_{i^-}$$
 всевозможные $[m] \in R$ $M = \bigcup_{m \in M} [m]$ т.к. $m \in [m]$ $a,b \in [m] \implies \begin{cases} aRm \\ bRm \end{cases} \implies aRb$ $a \in [m]$ $b \in [n]$ aRb $\implies [m] = [n]$ aRb $\implies aRn \implies a \in [m] \cap [n] \implies [m] \cap [n] \neq \emptyset \implies [m] = [n]$

Определение 3.8. Если \sim – отношение эквивалентности на M, то множество классов эквивалентности: M/\sim – фактормножество M относительно \sim

Часть II Основы теории чисел

ГЛАВА '

Делимость

 $a\mid b$ или b ; a читается как a делитbили b делится на a, если $\exists q\in\mathbb{Z}:b=aq$

 Π ример. Делители 4:-4,-2,-1,1,2,4 Делители 0: все элементы $\mathbb Z$

4.1. Свойства

1. Рефлексивность

$$2. \ \, \begin{cases} a \mid b \\ b \mid a \end{cases} \implies a = \pm b$$

3. Транзитивность

$$4. \ a \mid b \implies \forall c \in Z : a \mid bc$$

$$5. \ a \mid b, a \mid c \implies a \mid (b \pm c)$$

6.
$$a \mid b \implies \forall k \in \mathbb{Z} : ka \mid kb$$
 $b = aq \implies kb = kaq \implies ka \mid kb$

7.
$$ka \mid kb, k \neq 0 \implies a \mid b$$
 $kb = kaq \Leftrightarrow k(b-aq) = 0 \implies b-aq = 0 \implies b = aq$

Теорема 4.1 (О делении с остатком). $\forall a \in \mathbb{Z} \forall b \in \mathbb{N} \exists ! q, r \in \mathbb{Z}$

1.
$$a = bq + r$$

2.
$$0 \le r < b$$

Доказательство. Выберем q, т.ч. $a-bq\geqslant 0$ наименьшая возможная разность

$$r=a-bq$$

$$r=a-bq \implies a=bq+r$$

$$r\geqslant 0, \text{ предположим, что } r\geqslant b$$

$$a-bq-b=r-b\geqslant 0 \implies a-b(q+1)< a-bq$$
 противоречие с выбором q

Пусть $a = bq_1 + r_1 = bq_2 + r_2$

$$\begin{split} 0 \leqslant r_1, r_2 < b \\ b(q_1 - q_2) &= r_2 - r_1 \\ -(b - 1) \leqslant r_2 - r_1 \leqslant b - 1 \\ b \mid b(q_1 - q_2) \implies q_1 - q_2 = 0 \implies r_2 - r_1 = 0 \end{split}$$

глава 5

Простые числа

Определение 5.1. $p \in \mathbb{Z}$ называется простым, если $p \neq 0, \pm 1$ и $\{a: a \mid p\} = \{\pm 1, \pm p\}$. Простые числа могут быть отрицательными.

$$\mathbb{Z} = \{0, \pm 1\} \cup \{\text{простыe}\} \cup \{\text{составныe}\}$$

Утверждение 5.1. Пусть a > 1, тогда наименьший натуральный делитель a, отличный от 1 – простое число.

Доказательство. p — наименьший натуральный делитель n. Если p составное, то $\exists q: 1 < q < p, q \mid p$

$$\left. \begin{array}{c} q \mid p \\ p \mid n \end{array} \right\} \implies q \mid n, q$$

Следствие 5.1. Любое целое число, кроме ± 1 делится на простое

Следствие 5.2. Наименьший натуральный делитель, $\neq 1$, составного числа n не больше \sqrt{n} .

Доказательство. 1 p — наименьший натуральный делитель $n,\,p\neq 1,$ тогда

$$n = pb$$

¹Здесь и далее ∗ означает противоречие

Предположим, что $p>\sqrt{n},\, n$ – составное $\implies b\neq 1 \implies b\geqslant p>\sqrt{n}$ $n=pb>\sqrt{n}\sqrt{n}=n \qquad *$

Теорема 5.1 (Евклида). Простых бесконечно много.

Доказательство. Пусть это не так, $p_1, p_2, ..., p_k$ – все положительные простые.

$$n = p_1 p_2 ... p_k + 1$$

$$n > 1 \implies \text{составное} \implies \exists \text{ простое } p \mid n, p > 0$$

$$\implies p \in \{p_1, ..., p_k\} \implies p \mid (n-1)$$

$$p \mid n$$

$$p \mid (n-1)$$

$$p \mid (n-1)$$

$$p \mid (n-1)$$

глава (С

Наибольший общий делитель

Определение 6.1. $a_1,...,a_n \in \mathbb{Z}$ не все $0, d \geqslant 0$ называется наибольшим общим делителем $a_1,...,a_n$ если:

1.
$$d \mid a_1, ..., d \mid a_n$$

2.
$$\forall d' \geqslant 0 : d' \mid a_1, ..., d' \mid a_n \implies d' \mid d$$

Предложение 6.1. НОД существует и единственный

Доказательство.

$$I = \{a_1c_1 + \dots + a_nc_n : c_1, \dots, c_n \in \mathbb{Z}\}\$$

d – наименьший положительный элемент I

$$c_i \neq 0 \implies c_i \cdot 1 > 0$$
 или $c_i \cdot (-1) > 0$

Доказать: $d - \text{НОД } a_1, ..., a_n$ Предположим, что $d \nmid a_i$

$$\begin{split} a_j &= dq + r, 0 < r < d \\ r &= a_j - dq = a_j - (a_1c_1 + \ldots + a_nc_n)q = \\ &= a_1(-c_1)q + \ldots + a_j(1-c_1q) + a_n(-c_nq) \in I \end{split}$$

Пусть $d'\mid a_1,...,d'\mid a_n\implies d'\mid a_1c_1,...,d'\mid a_nc_n\implies d'\mid (a_1c_1+...+a_nc_n)\implies d'\mid d$

Единственность. Пусть d_1,d_2 – НОД $a_1,...,a_n \implies d_2 \mid d_1,$ аналогично $d_1 \mid d_2 \implies d_1 = d_2$

6.1. Свойства

Обозначения: $HOД(a_1,...,a_n)$ или $gcd(a_1,...,a_n)$ или $(a_1,...,a_n)$

1.
$$b \mid a \implies (a, b) = b$$

$$2. \ a = bl + a' \implies (a, b) = (a', b)$$

Доказательство.

$$\{$$
делители a и $b\} = \{$ делители a' и $b\}$

Включение левого множества в правое:

$$\left. \begin{array}{c} d \mid a \\ d \mid b \end{array} \right\} \implies d \mid (a - bl) \implies d \mid a'$$

Включение правого в левое доказывается аналогично, следовательно множества равны

3.
$$\forall m > 0 : (am, bm) = m(a, b)$$

4.
$$d \mid a, d \mid b \implies \left(\frac{a}{d}, \frac{b}{d}\right) = \frac{(a,b)}{d}$$

5. Линейное представление НОД: $a,b\in\mathbb{N} \implies \exists u,v\in\mathbb{Z}: au+bv=(a,b)$

Доказательство.

$$\begin{split} r_1 &= a - bq = a \cdot 1 + b \cdot (-q_1) \\ r_2 &= b - r_1 q_2 = b - (a \cdot 1 + b \cdot (-q_1)) q_2 = a \cdot (-q_2) + b(1 + q_1 q_2) \\ r_3 &= r_1 - r_2 q_3 = a \cdot (\ldots) + b \cdot (\ldots) \end{split}$$

6.2. Алгоритм Евклида

Даны
$$a,b \in \mathbb{N}, a > b$$

$$a = bq_1 + r_1 \qquad 0 \leqslant r_1 < b$$

$$r_1 \neq 0 \qquad b = r_1q_2 + r_2 \qquad 0 \leqslant r_2 < r_1$$

$$r_2 \neq 0 \qquad r_1 = r_2q_3 + r_3 \qquad 0 \leqslant r_3 < r_2$$

$$\vdots$$

$$r_{n-2} \neq 0 \quad r_{n-3} = r_{n-2}q_{n-1} + r_{n-1} \quad 0 \leqslant r_{n-1} < r_{n-2}$$

$$r_{n-1} \neq 0 \quad r_{n-2} = r_{n-1}q_n + 0$$

21

Теорема 6.1. $r_{n-1} = (a, b)$

Доказательство.

$$(a,b)=(b_1,r_1)=(r_1,r_2)=(r_2,r_3)=\ldots=(r_{n-2},r_{n-1})=r_{n-1}$$

6.3. Взаимно простые числа

Определение 6.2. $a,b \in \mathbb{Z}$ называются взаимно простыми, если (a,b)=1.

Свойства

1. $(a,b) = 1 \Leftrightarrow \exists u, v \in \mathbb{Z} : au + bv = 1$

Доказательство.

$$\iff d \mid a \\ \Leftarrow d \mid b \\ \implies d \mid (au + bv) \implies d = \pm 1$$

2.
$$(a,b) = 1 \implies \forall c \in \mathbb{Z} : (a,bc) = (a,c)$$

Доказательство.

3.
$$a \mid bc, (a, b) = 1 \implies a \mid c$$

Доказательство.

$$\exists u, v \in \mathbb{Z} : au + bv = 1 \qquad | \cdot c$$

$$\underbrace{auc}_{a|\dots} + \underbrace{bvc}_{a|\dots} = c \implies c \mid a$$

4. $(a, b_1) = (a, b_2) = 1 \implies (a, b_1b_2) = 1$

Доказательство.

$$\begin{aligned} au_1 + b_1v_1 &= 1 \\ au_2 + b_2v_2 &= 1 \\ 1 &= a^2u_1u_2 + au_1bv_2 + b_1v_1au_2 + b_1b_2v_1v_2 &= \\ a\underbrace{(\ldots)}_u + b_1b_2\underbrace{v_1v_2}_v \implies (a, b_1b_2) &= 1 \end{aligned}$$

5. Пусть $a_1,...,a_m,b_1,...,b_n\in\mathbb{Z}$ и $(a_i,b_j)=1(1\leqslant i\leqslant m;1\leqslant j\leqslant n)$ $\implies (a_1\cdot...\cdot a_m,b_1\cdot...\cdot b_n)=1$

Доказательство. Возьмем $(a_i,b_1\cdot\ldots\cdot b_n)=1.$ Через индукцию по k докажем $(a_i,b_1\cdot\ldots\cdot b_k)=1.$ База:

$$(a_1, b_1) = 1$$

Переход:

$$\left. \begin{array}{l} (a_i,b_1\cdot\ldots\cdot b_k)=1\\ (a_i,b_{k+1}) \end{array} \right\} \implies (a_i,b_1\cdot\ldots\cdot b_kb_{k+1})=1$$

Проведя аналогичную индукцию с b_i получим:

$$(a_1 \cdot \ldots \cdot a_m, b_1 \cdot \ldots \cdot b_n) = 1$$

ГЛАВА

HOK

Определение 7.1. Пусть $a_1,...,a_n \in \mathbb{Z}$, их наименьшее общее кратное – наименьшее натуральное c, т.ч. $a_1 \mid c, ..., a_m \mid c$.

Обозначение: $HOK(a_1, ..., a_n)$.

Теорема 7.1. Пусть $a, b \in \mathbb{N}$, тогда

$$\mathrm{HOK}(a,b) = \frac{ab}{(a,b)}$$

Доказательство. Пусть $(a,b)=d, a=da_1, b=db_1$

$$\frac{ab}{d} = a_1b = ab_1$$

то есть $\frac{ab}{d}$ — общее кратное a,b Пусть M — какое-либо общее кратное a,b

$$\begin{split} M &= dM_1 \\ a \mid M \implies da_1 \mid dM1 \implies a_1 \mid M_1 \end{split}$$

Аналогично $b_1 \mid M_1$

$$M_1 = a_1c$$
 $b_1 \mid M_1 \qquad (b_1,a_1) = 1 \implies b_1 \mid c$ $a_1b_1 \mid M_1 \qquad a_1b_1d \mid M,$ где $a_1b_1d = \frac{ab}{(a,b)}$

Замечание. При этом проверили: любое общее кратное a, b, кратно HOK(a,b)

глава 8

Основная теорема арифметики

Лемма 8.1. Пусть p – простое число $a \in \mathbb{Z}$, тогда либо $p \mid a$, либо (p,a) = 1.

Доказательство.

$$(p,a) \mid p \implies \left[\begin{array}{c} (p,a) = 1 \\ (p,a) = p \implies p \mid a \end{array} \right.$$

Лемма 8.2. Пусть p – простое u $p \mid (a_1 \cdot ... \cdot a_n) \implies \exists i : p \mid a_i$

$$p \mid (a_1...a_n)$$

По лемме 8.1

$$\left[\begin{array}{l} (p,a_n)=1 \implies p \mid (a_1...a_{n-1}) \\ p \mid a_n \implies \text{ok} \end{array}\right.$$

По идукционному предположению

$$p \mid a_i (1 \leqslant i \leqslant n-1)$$

Теорема 8.1 (Основная теорема арифметики). Любое натуральное число раскладывается в произведение положительных простых чисел, так что это разложение единственно с точностью до порядка множителей.

Доказательство. Докажем существование: для натурального числа $n \geqslant 2$ проведем индукцию по n.

База:

$$2 = 2$$

Переход:

$$n$$
 – простое, то доказывать нечего n – составное, то $n = ab, 1 < a, b < n$

Тогда a,b раскладываются на простые множители и, соответственно, их произведение тоже раскладывается

Докажем единственность: проведем индукцию по n.

$$q_s \mid n \implies \exists j : \underbrace{q_s \mid p_j}_{>0} \implies q_s = p_j \implies p_1 ... \hat{p_j} ... p_r = \underbrace{q_1 ... q_{s-1}}_{< n}$$

 $(q_1,...,q_{s-1})$ отличается от $(p_1,...,\hat{p_j},...,p_r)$ только порядком (т.к. s=r), это означает единственность для n.

Определение 8.1. Представление числа a>1 в виде $p_1^{\alpha_1}...p_n^{\alpha_n}$, где p_i попарно различны, а $\alpha_i\in\mathbb{N}$ называется каноническим разложением (или факторизацией) числа a.

Следствие 8.1. Пусть $a = p_1^{\alpha_1}...p_n^{\alpha_n}$ – каноническое разложение, тогда множество положительных делителей a:

$$\{p_1^{\beta_1}...p_n^{\beta_n}: 0\leqslant \beta_i\leqslant \alpha_i, i=1,...,n\}$$

Доказательство. Очевидно, что $p_1^{\beta_1}...p_n^{\beta_n} \mid a$. Обратно: пусть $d \mid a,a=dc$. Из единственности разложения можно утверждать в d входят только $p_1,...,p_n$ и показатель p_i не больше α_i .

Следствие 8.2. Число натуральных делителей $a = p_1^{\alpha_1}...p_n^{\alpha_n}$ – это

$$(\alpha_1+1)...(\alpha_n+1)$$

Предложение 8.1. Пусть $m=\pm p_1^{l_1}...p_s^{l_s}; n=\pm p_1^{r_1}...p_s^{r_s},\ mor\partial a$

НОД
$$(m,n) = p_1^{\min(l_1,r_1)}...p_s^{\min(l_s,r_s)}$$

$$\mathrm{HOK}(m,n) = p_1^{\max(l_1,r_1)}...p_s^{\max(l_s,r_s)}$$

Доказательство.

$$\begin{array}{cccc} d\mid m\Leftrightarrow d=p_1^{\alpha_1}...p_s^{\alpha_s} & & \alpha_j\leqslant l_j\\ & d\mid n\Leftrightarrow ... & & \alpha_j\leqslant r_j\\ & \begin{cases} d\mid m\\ d\mid n & \Leftrightarrow ... & & \alpha_j\leqslant \min(l_j,r_j) \end{cases}\\ d=\mathrm{HOД}(n,m)\Leftrightarrow ... & & \alpha_j=\min(l_j,r_j) \end{array}$$

$$\begin{split} m\mid c,n\mid c\Leftrightarrow c = p_1^{\beta_1}...p_s^{\beta_s}q_1^{\gamma_1}...q_h^{\gamma_h}\\ l_j\leqslant \beta_j,r_j\leqslant \beta_j,j=1...s \implies \beta_j\geqslant \max(l_j,r_j)\\ \mathrm{HOK}(m,n) = p_1^{\beta_1}...p_s^{\beta_s},\beta_j = \max(l_j,r_j) \end{split}$$

Следствие 8.3.

$$HOД(m, n) \cdot HOK(m, n) = mn$$
 $m, n > 0$

глава 9

Сравнения по модулю

Определение 9.1. $a,b\in\mathbb{Z}$ сравнимы по модулю m, если $m\mid (a-b)$

 $\Pi pumep$. Если m=5, то 13 и 28 сравнимы по модулю 5, а 17 и 26 не сравнимы по модулю 5.

Обозначение:

$$13 \equiv 28 \pmod{5} \qquad -7 \equiv 3 \pmod{5}$$

9.1. Свойства

- 1. Рефлексивность: $a \equiv a \pmod{m}$
- 2. Симметричность: $a \equiv b \pmod{m} \implies b \equiv a \pmod{m}$

Доказательство.

$$m \mid (b-a) = m \mid -(a-b)$$

3. Транзитивность:

$$\left. \begin{array}{ll} a \equiv b \pmod{m} \\ b \equiv c \pmod{m} \end{array} \right\} \implies a \equiv c \pmod{m}$$

Доказательство.

$$m \mid (a - c) = m \mid (a - b) + m \mid (b - c)$$

$$4. \begin{array}{l} a \equiv b \pmod{m} \\ a' \equiv b' \pmod{m} \end{array} \} \implies a + a' \equiv b + b' \pmod{m}$$

Доказательство.

$$m \mid ((a+a')-(b+b')) = m \mid (a-b)+m \mid (a'-b')$$

$$5. \ \, \left. \begin{array}{l} a \equiv b \pmod{m} \\ d \in \ Z \end{array} \right\} \implies da \equiv db \pmod{dm}$$

Доказательство.

$$m \mid (a-b) \implies dm \mid d(a-b)$$

$$6. \ \, \begin{cases} a \equiv b \pmod{m} \\ k \mid m \end{cases} \implies a \equiv b \pmod{k}$$

7.
$$a \equiv b \pmod{m}$$
 $a' \equiv b' \pmod{m}$ $\Rightarrow aa' \equiv bb' \pmod{m}$

Доказательство.

$$aa' \equiv ba' \pmod m$$

$$(aa' \equiv ba' \pmod ma') \text{ по свойству 5}$$

$$\implies aa' \equiv ba' \pmod m \text{ по свойству 6}$$

$$ba' = bb' \pmod m$$
 По транзитивности: $aa' \equiv bb' \pmod m$

8. $a \equiv b \pmod{m > 0}$ \Leftrightarrow остатки a и b при делении на m совпадают

Доказательство.

9.
$$a \equiv b \pmod{m} \implies (a, m) = (b, m)$$

глава 10

Кольцо классов вычетов

Определение 10.1. Класс эквивалентности относительно сравнимости по модулю m называется классом вычетов по модулю m. Класс числа a обозначается: $[a]_m = \overline{a} = \{..., a-2m, a-m, a, a+m, a+2m, ...\}$

Пример. Разбиение на классы при m=3

$$\begin{split} M_0 &= \{..., -3, 0, 3, 6, 9, ...\} \\ M_1 &= \{..., -5, -2, 1, 4, 7, 10, ...\} \\ M_2 &= \{..., -4, -1, 2, 5, 8, 11, ...\} \\ \mathbb{Z} &= M_0 \cup M_1 \cup M_2 \end{split}$$

Определение 10.2. Фактор-множество относительно сравнимости по модулю обозначают $\mathbb{Z}/m\mathbb{Z}$, читают как «зет по эм зет», и называют множеством классов вычетов по модулю m

Предложение 10.1. Пусть $m \in N$, тогда $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство. Пусть r – остаток от a при делении на m, тогда

$$[a]_m = [r]_m \implies \mathbb{Z}/m\mathbb{Z} = \{[0]_m, [1]_m, ..., [m-1]_m\}, \text{ т.е. } |\mathbb{Z}/m\mathbb{Z}| \leqslant m$$
 осталось проверить, что $[i]_m \neq [j]_m, 0 \leqslant i < j \leqslant m-1$

$$i \not\equiv j$$
, (mod m) т.к. $0 < j - i < m$

Определение 10.3. Набор чисел $a_1,...,a_m$ называется полной системой вычетов по модулю m, если $\forall i\neq j: a_i\not\equiv a_j\pmod m$ (при этом: $\{[a_1],...,[a_m]\}=\mathbb{Z}/m\mathbb{Z})$

Предложение 10.2. Пусть $a_1,...,a_m$ – полная система вычетов по модулю m, пусть $(c,m)=1,b\in\mathbb{Z},$ тогда $\{ca_j+b:j=1,...,m\}$ тоже ПСВ по модулю m

Доказательство.

$$ca_i + b \equiv ca_j + b \pmod{m}$$

$$-b \equiv -b \pmod{m}$$

$$\Rightarrow ca_i \equiv ca_j \pmod{m}$$

$$\binom{m \mid c(a_i - a_j)}{(c, m) = 1} \Rightarrow m \mid (a_i - a_j)$$

$$\Rightarrow a_j \equiv a_i \pmod{m} \Rightarrow i = j$$

Введем операции на $\mathbb{Z}/m\mathbb{Z}$

$$\overline{a} + \overline{b} := \overline{a+b}$$

$$\overline{a} \cdot \overline{b} := \overline{ab}$$

Предложение 10.3. Сложение и умножение на этом множестве корректно определены.

<u>Доказательство.</u> Нужно проверить: если $\overline{a}=\overline{a'},\overline{b}=\overline{b'},$ то $\overline{a'+b'}=\overline{a+b}$ и $\overline{a'b'}=\overline{ab}$ Имеем

$$a \equiv a' \pmod{m}$$
 $b \equiv b' \pmod{m}$
 $\implies a' + b' \equiv a + b \pmod{m}$
 $a'b' \equiv ab \pmod{m}$
 $\implies \overline{a' + b'} = \overline{a + b}$ $\overline{a'b'} = \overline{ab}$

Теорема 10.1. $(\mathbb{Z}/m\mathbb{Z}, +, *)$ – коммутативное ассоциативное кольцо с единицей.

Доказательство. 1. $\overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a}$

- 2. Ассоциативность аналогично.
- 3. $\overline{0}$ нейтральный

- $4. \ \overline{-a}$ обратный к \overline{a}
- 5. Коммутативность и ассоциативность умножения аналогично сложению
- 6. $\overline{a}(\overline{b}+\overline{c})=\overline{a}\cdot\overline{(b+c)}=\overline{a(b+c)}=\overline{ab+ac}=\overline{ab}+\overline{ac}=\overline{a}\cdot\overline{b}+\overline{a}\cdot\overline{c}-$ дистрибутивность умножения
- 7. $\overline{1}$ нейтральный по умножению

Определение 10.4. Областью целостности называется коммутативное ассоциативное кольцо с $1 \neq 0$, т.ч. если $a, b \neq 0$, то $ab \neq 0$

Предложение 10.4. $\mathbb{Z}/m\mathbb{Z}$ – область целостности только если т простое.

Доказательство. Пусть $m=1 \implies \mathbb{Z}/m\mathbb{Z}=\{\overline{0}\}; 1=0$ – не ОЦ. Пусть m – составное, тогда

$$m=ab$$
 $1 < a,b < m$ $\Longrightarrow \overline{a} \cdot \overline{b} = \overline{ab} = \overline{m} = \overline{0}$ $\overline{a}, \overline{b} \neq \overline{0} \Longrightarrow$ делители нуля

Пусть m — простое, тогда $\overline{1}\neq\overline{0}$, т.к. m>1. Предположим, что $\overline{a}\cdot\overline{b}=\overline{0}$, но, если $\overline{ab}=\overline{0}$, то

$$\begin{array}{c} m \mid ab \\ m \text{ простое} \end{array} \} \implies \left[\begin{array}{c} m \mid a \\ m \mid b \end{array} \right] \implies \left[\begin{array}{c} \overline{a} = \overline{0} \\ \overline{b} = \overline{0} \end{array} \right]$$

10.1. Обратимые классы

Определение 10.5. Если A – ассоциативное кольцо с 1, то $A^* = \{a \in A : \exists a^{-1}\}$ – множество обратимых элементов A, а так же группа по умножению.

Пример.

$$\mathbb{Z}^* = \{\pm 1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$$

Теорема 10.2. Пусть $m \in \mathbb{N}, a \in \mathbb{Z}$. Тогда $\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^* \Leftrightarrow (a, m) = 1$

$$\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^* \Leftrightarrow \exists \overline{c} \in \mathbb{Z}/m\mathbb{Z} : \overline{a} \cdot \overline{c} = \overline{1}$$

$$\Leftrightarrow \exists c \in \mathbb{Z} : ac \equiv 1 \pmod{m}$$

$$\Leftrightarrow \exists c, t \in \mathbb{Z} : ac = 1 + mt$$

$$\Leftrightarrow \exists c, t \in \mathbb{Z} : ac - mt = 1$$

$$\Leftrightarrow (a, m) = 1$$

Следствие 10.1. $\mathbb{Z}/m\mathbb{Z}$ – поле, только если m – простое.

 \mathcal{A} оказательство. Пусть m – составное $\implies \mathbb{Z}/m\mathbb{Z}$ – не ОЦ \implies не поле.

Пусть p = m – простое

$$\implies (\mathbb{Z}/p\mathbb{Z})^* = \{\overline{a}: 0 \leqslant a < p-1, (a,p) = 1\} = \{\overline{1}, \overline{2}, \overline{3}, ..., \overline{p-1}\} = (\mathbb{Z}/p\mathbb{Z}) \setminus \{\overline{0}\}$$

т.е. $\mathbb{Z}/p\mathbb{Z}$ – конечное поле

Мы обнаружили поля из конечного числа элементов. Что мы о них знаем:

- 1. Поле вида $\mathbb{Z}/p\mathbb{Z}$ единственное вплоть до изоморфизма.
- 2. Если в поле $m=p^l$ количество элементов, то оно существует и единственно.
- 3. Если в поле $m \neq p^l$ элементов, то такое поле не существует.

Теорема 10.3 (Вильсона). Пусть p – простое число, тогда

$$(p-1)! \equiv -1 \pmod p$$

Пример.

$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24 \equiv -1 \pmod{5}$$

Доказательство.

$$\begin{split} \prod_{n=1}^{p-1} \overline{n} &= \overline{-1} \text{ в } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ \overline{a}, \overline{b} &: \overline{a} \cdot \overline{b} &= \overline{1} \\ \overline{a'}, \overline{b'} &: \overline{a'} \cdot \overline{b'} &= \overline{1} \end{split}$$

• • •

В итоге весь класс разобьется на пары: x, x^{-1} , но некоторые числа будут выписаны дважды, нужно выяснить когда

$$x \cdot x = \overline{1}$$
?

Для этого решим уравнение:

$$x^2 = \overline{1}$$

$$x = \overline{c}$$

$$\overline{c} \cdot \overline{c} = \overline{1}$$

$$c^2 \equiv 1 \pmod{p}$$

$$(c-1)(c+1) \equiv 0 \pmod{p}$$

$$\begin{bmatrix} c \equiv 1 \pmod{p} \\ c \equiv -1 \pmod{p} \\ c \equiv -1 \pmod{p} \end{bmatrix}$$

$$x = \overline{1} \qquad x = \overline{-1}$$

$$\prod_{n=1}^{p-1} \overline{n} = \overline{1} \cdot \dots \cdot \overline{1} \cdot \overline{1} \cdot \overline{-1} = \overline{-1}$$

Китайская теорема об остатках

Теорема 11.1. Пусть $m, n \in \mathbb{N}, (m, n) = 1, a, b \in \mathbb{Z}, mor \partial a$

$$\exists x \in \mathbb{Z} : \begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

Далее, если

$$x' \in \mathbb{Z}, \begin{cases} x' \equiv a \pmod{m} \\ x' \equiv b \pmod{n} \end{cases} \Leftrightarrow x' \equiv x \pmod{mn}$$

Доказательство.

$$x' \equiv x \pmod{mn} \Leftrightarrow \begin{cases} x' \equiv x \pmod{m} \\ x' \equiv x \pmod{n} \end{cases} \Leftrightarrow \begin{cases} x' \equiv a \pmod{m} \\ x' \equiv b \pmod{n} \end{cases}$$
$$(m, n) = 1 \implies \overline{m} \in (\mathbb{Z}/n\mathbb{Z})^*$$
$$\implies \exists x_1 \in \mathbb{Z} : \overline{mx_1} = \overline{1} \in (\mathbb{Z}/m\mathbb{Z})^* \implies mx_1 \equiv 1 \pmod{n}$$

Аналогично

$$\exists x_2 \in \mathbb{Z} : nx_2 \equiv 1 \pmod{m}$$

$$\begin{cases} mx_1 \equiv 0 \pmod{m} & \begin{cases} nx_2 \equiv 1 \pmod{m} \\ mx_1 \equiv 1 \pmod{n} \end{cases} & \begin{cases} nx_2 \equiv 1 \pmod{m} \\ nx_2 \equiv 0 \pmod{n} \end{cases}$$

$$b(mx_1) + a(nx_2) \equiv b \cdot 0 + a \cdot 1 \pmod{m}$$

$$b(mx_1) + a(nx_2) \equiv b \cdot 1 + a \cdot 0 \pmod{n} \Rightarrow \begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

 Π ример. Сколько решением имеет уравнение $x^2 \equiv 1 \pmod{77}$

$$x^2 \equiv 1 \pmod{77} \Leftrightarrow \begin{cases} x^2 \equiv 1 \pmod{7} \\ x^2 \equiv 1 \pmod{11} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{11} \end{cases} \Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{11} \\ x \equiv -1 \pmod{11} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv 1 \pmod{11} \\ x \equiv -1 \pmod{11} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv -1 \pmod{11} \end{cases}$$

$$\Leftrightarrow \begin{cases} x \equiv 1 \pmod{7} \\ x \equiv -1 \pmod{7} \\ x \equiv 43 \pmod{77} \\ x \equiv -43 \pmod{77} \\ x \equiv -1 \pmod{77} \end{cases}$$

Функция Эйлера

Определение 12.1. Функция Эйлера — это количество обратимых классов по модулю n:

$$\begin{aligned} n &\in \mathbb{N} \\ \varphi &= |(\mathbb{Z}/n\mathbb{Z})^*| = \{a: 0 \leqslant a < n, (a,n) = 1\} \\ \varphi: \mathbb{N} &\to \mathbb{N} \end{aligned}$$

Пример.

$$\begin{split} |(\mathbb{Z}/5\mathbb{Z})^*| &= 4 & \varphi(5) = 4 \\ |(\mathbb{Z}/6\mathbb{Z})^*| &= 2 & \varphi(6) = 2 \end{split}$$

Предложение 12.1. Пусть p – простое, $n \in \mathbb{N}$, тогда

$$\varphi(p^n)=p^n-p^{n-1}=p^{n-1}(p-1)$$

Доказательство.

$$\begin{split} (a,p^n) &= 1 \Leftrightarrow p \nmid a \\ |\{a: 0 \leqslant a < p^n - 1, (a,p) = 1\}| &= \\ &= p^n - |\{a: 0 \leqslant a \leqslant p^n - 1, p \mid a\}| = p^n - p^{n-1} \end{split}$$

Предложение 12.2. Пусть $m, n \in \mathbb{N}, (m, n) = 1, \ mor \partial a$

$$\varphi(mn) = \varphi(m)\varphi(n)$$

$$\mathbb{Z}/mn\mathbb{Z} \xrightarrow{\lambda} (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

По KTO λ – биекция

$$(a, mn) \Leftrightarrow \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases}$$

$$\lambda((\mathbb{Z}/mn\mathbb{Z})^*) = (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$$

$$[a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^* \Leftrightarrow (a, mn) = 1 \Leftrightarrow \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \\ [a]_n \in (\mathbb{Z}/n\mathbb{Z})^* \end{cases} \Leftrightarrow \lambda([a]_{mn}) \in (\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^*$$

$$\Rightarrow \underbrace{|\mathbb{Z}/mn\mathbb{Z}|}_{\varphi(mn)} = \underbrace{|(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})|}_{\varphi(m)\varphi(n)}$$

Таким образом $a=p_1^{r_1}...p_s^{r_s}$, где $p_1...p_s$ – различные простые.

$$\varphi(a) = \varphi(p_1^{r_1})...\varphi(p_s^{r_s}) = p_1^{r_1-1}(p_1-1)...p_s^{r_s-1}(p_s-1)$$

Теорема Эйлера

Теорема 13.1. Пусть $n \in \mathbb{N}, a \in \mathbb{Z}, (a, n) = 1, \ mor \partial a$

$$a^{\varphi(n)} \equiv 1 \pmod n$$

Пример.

$$5^{301} \equiv ? \pmod{101}$$
 $5^{100} \equiv 1 \pmod{101}$ $5^{300} \equiv 1 \pmod{101}$ $5^{301} \equiv 5 \pmod{101}$

Доказательство. Рассмотрим все обратимые классы $X_1,...,X_{\varphi(n)}$

$$\begin{split} (\mathbb{Z}/n\mathbb{Z})^* &= \{X_1, ..., X_{\varphi(n)}\} \\ \overline{a} &\in (\mathbb{Z}/n\mathbb{Z})^* \\ \overline{a}X_1, ..., \overline{a}X_{\varphi(n)} &\in (\mathbb{Z}/n\mathbb{Z})^* \quad (\overline{a}X_i \neq \overline{a}X_j, i \neq j) \\ &\Longrightarrow (\mathbb{Z}/n\mathbb{Z})^* = \{\overline{a}X_1, ..., \overline{a}X_{\varphi(n)}\} \\ &\Longrightarrow \prod_{i=1}^{\varphi(n)} (\overline{a}X_i) = \prod_{X \in (\mathbb{Z}/n\mathbb{Z})^*} X = \prod_{i=1}^{\varphi(a)} X_i \\ \prod_{i=1}^{\varphi(n)} (\overline{a}X_i) &= (\overline{a})^{\varphi(n)} \prod_{i=1}^{\varphi(n)} X_i \\ (\overline{a})^{\varphi(n)} &= \overline{1} \\ a^{\varphi(n)} &\equiv 1 \pmod{n} \end{split}$$

Следствие 13.1 (Малая теорема Ферма). *Пусть р – простое, а* $\in \mathbb{Z}$, *тогда*

$$a^p \equiv a \pmod{p}$$

Доказательство.

$$(a,p)=1$$

$$a^{p-1}\equiv 1\pmod p$$

$$a^p\equiv a\pmod p$$

$$p\mid a$$

$$a^p\equiv 0\equiv a\pmod p$$

13.1. Алгоритм RSA

- 1. Создание пары ключей
 - а) Выберем $p \neq q$ большие числа простые числа

b)
$$n = pq$$
 $\varphi(n) = (p-1)(q-1)$

с) Выбрать
$$1 < e < \varphi(n)$$
 $(e, \varphi(n)) = 1$

d) Вычислить
$$1 < d < \varphi(n)$$
 $ed \equiv 1 \pmod{\varphi(n)}$

Теперь пара (e, n) – открытый ключ, а пара (d, n) закрытый.

- 2. Шифрование
 - а) $0 \le m < n$ сообщение
 - b) $m^e \equiv r \pmod{n}, r < n$
- 3. Дешифрование

a)
$$r^d \equiv r' \pmod{n}, r' < n$$

b)
$$r' \equiv r^d \equiv (m^e)^d \pmod{n} = m^{ed} \equiv m \pmod{n}$$

c)
$$\begin{cases} 0 \leqslant r' < n \\ 0 \leqslant m < n \end{cases} \implies r' = m$$

Часть III Комплексные числа

Определение

Комплексные числа — это числа вида a+bi, где $i^2=-1$ и $a,b\in\mathbb{R}.$ Тогда определим комплексные числа таким образом:

$$\mathbb{C} = \mathbb{R} \times \mathbb{R} \qquad (a, b)$$
$$(a, b) + (a', b') = (a + a', b + b')$$
$$(a, b) \cdot (a', b') = (aa' - bb', ab' + a'b)$$

Теорема 14.1. $(\mathbb{C},+,\cdot)$ – коммутативное ассоциативное кольцо с 1.

Доказательство. 1. Коммутативность сложения очевидна

- 2. Ассоциативность сложения очевидна
- 3. (0,0) нейтральный по сложению
- 4. (-a, -b) = -(a, b)
- 5. Коммутативность умножения очевидна
- 6. Ассоциативность непосредственная проверка
- 7. Дистрибутивность непосредственная проверка
- 8. (1,0) нейтральный элемент

$$(a,b) \cdot (1,0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + 1 \cdot b) = (a,b)$$

Элементы \mathbb{C} – комплексные числа Если бы берем пару (a,0):

$$(a,0) + (b,0) = (a+b,0)$$

$$(a,0)(b,0) = (ab-0c\cdot 0, a\cdot 0 + 0\cdot b) = (ab,0)$$

Тогда $\{(a,0): a \in \mathbb{R}\}$ – подкольцо. Будем отождествлять (a,0) с a.

$$(0,b) = (0,1)(b,0)$$
$$(a,b) = (a,0) + (0,b) = a(0,1)b$$

Обозначим пару (0,1) за i и получим запись

$$(a,b) = a + ib$$

Теперь справедливо следующее

$$i^2 = (0,1)(0,1) = (-1,0) = -1$$

 $(a+ib) + (a'+ib') = a + a' + i(b+b')$

Обозначения

Задано

$$z = a + ib, a, b \in \mathbb{R}$$

тогда:

- a вещественная часть $z \Leftrightarrow \operatorname{Re} z = a$
- b мнимая часть $z \Leftrightarrow \operatorname{Im} z = b$
- *i* мнимая единица

Из такого отождествления следует, что $\mathbb{R}\subset\mathbb{C}$ $\mathbb{C}\setminus\mathbb{R}$ – мнимые числа, т.е. числа вида $ib(b\in\mathbb{R})$

Комплексное сопряжение и модуль

Рассмотрим отображение:

$$\begin{split} \mathbb{C} &\to \mathbb{C} \\ a + bi &\mapsto a - bi \\ z &\mapsto \overline{z} \end{split}$$

Оно называется комплексным сопряжением

Предложение 15.1. 1. $\overline{z+w} = \overline{z} + \overline{w}$

2.
$$\overline{zw} = \overline{z} \cdot \overline{w}$$

3.
$$\overline{\overline{z}} = z$$

4.
$$z = \overline{z} \Leftrightarrow z \in \mathbb{R}$$

5.
$$z \cdot \overline{z} \in \mathbb{R}_{\geqslant 0}; z \cdot \overline{z} = 0 \Leftrightarrow z = 0$$

Доказательство.

$$z = a + bi$$
 $w = c + di$

Докажем 1:

$$\overline{(a+bi)+(c+di)} = \overline{(a+c)+(b+d)i} = (a+c)-(b+d)i = (a-bi)+(c-di) = \overline{a+bi}+\overline{c+di}$$

Докажем 2:

$$\overline{(a+bi)(c+di)} = \overline{(ac-bd) + (ad+bc)i} = (ac-bd) - (ad+bc)i = (a-bi)(c-di) = \overline{a+bi} \cdot \overline{c+di}$$

Доказательство 3 очевидно, докажем 4:

$$z = \overline{z} \Leftrightarrow \operatorname{Im} z = 0 \Leftrightarrow z \in \mathbb{R}$$

Докажем 5:

$$z \cdot \overline{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2 \in \mathbb{R}_{\geqslant 0}$$
$$a^2 + b^2 = 0 \Leftrightarrow a = b = 0$$

Определение 15.1. Пусть $z \in \mathbb{C}$. Его модулем называется:

$$|z| = \sqrt{z \cdot \overline{z}} \qquad |a + bi| = \sqrt{a^2 + b^2}$$

3амечание. Для числа $a \in \mathbb{R}$ новый модуль совпадает со старым.

Предложение 15.2. \mathbb{C} – *поле*

Доказательство.

$$z \in \mathbb{C}, z \neq 0$$
$$z \cdot \overline{z} = |z|^2 \neq 0 \implies z \cdot \frac{1}{|z|^2} \overline{z} = 1$$

Теперь мы можем использовать деление:

$$\frac{z}{w} = z \cdot w^{-1} = w^{-1}z$$

а также возведение в степень и соответствующие свойства:

$$z^{m} = \begin{cases} \overbrace{z \cdot \dots \cdot z}^{m} & m > 0 \\ 1 & m = 0 \\ \underbrace{z^{-1} \cdot \dots \cdot z^{-1}}_{-m} & m < 0 \end{cases}$$

$$z^{m+n} = z^{m} + z^{n}$$

$$z^{mn} = (z^{m})^{n}$$

$$(zw)^{n} = z^{n}w^{n}$$

Предложение 15.3 (Свойства модуля). 1. |zw| = |z||w|

2. Если
$$w \neq 0$$
, то $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$

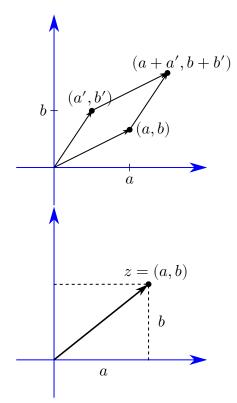
Доказательство. Докажем 1:

$$|zw|^2 = (zw)\overline{(zw)} = zw\overline{z} \cdot \overline{w} = z\overline{z}w\overline{w} = |z|^2|w|^2$$

Докажем 2:

$$z = \frac{z}{w}w \implies |z| = \left|\frac{z}{w}\right| \cdot |w|$$

15.1. Геометрическое представление комплексного числа



$$z = a + bi$$

$$z' = a' + b'i$$

$$(a + bi) + (a' + b'i) =$$

$$(a + a') + (b + b')i$$

$$\sqrt{a^2 + b^2} = |z|$$

Таким образом |z| — расстояние от точки изображающей число z до начала координат.

Замечание.

$$|\overline{z}| = |z|$$

Предложение 15.4 (Неравенство треугольника). Для $z,w\in\mathbb{C}$:

$$||z| - |w|| \le |z + w| \le |z| + |w|$$

Доказательство. Докажем правое неравенство:

$$z+w=0 \implies |z+w| \leqslant |z|+|w| \text{ очевидно верно}$$

$$z+w\neq 0 \qquad 1=\frac{z}{z+w}+\frac{w}{z+w}$$

$$1=\operatorname{Re}1=\operatorname{Re}\left(\frac{z}{z+w}\right)+\operatorname{Re}\left(\frac{w}{r+w}\right)$$

$$\sqrt{a^2+b^2}\geqslant \sqrt{a^2}=|a|\geqslant a$$

$$\operatorname{Re}\left(\frac{z}{z+w}\right)+\operatorname{Re}\left(\frac{w}{r+w}\right)\leqslant \left|\frac{z}{z+w}\right|+\left|\frac{w}{z+w}\right|$$

$$|z+w|\leqslant |z|+|w|$$

Докажем левое неравненство:

$$z = (z+w) + (-w) \implies$$

$$|z| \leqslant |z+w| + |-w| \implies |z+w| \geqslant |z| - |w|$$
 Аналогично
$$|z+w| \geqslant |w| - |z|$$

$$\implies |z+w| \geqslant ||z| - |w||$$

Тригонометрическая форма комплексного числа

$$r = |z|$$

$$z = r\left(\frac{a}{r} + \frac{b}{r}i\right)$$

$$\left(\frac{a}{r}\right)^2 + \left(\frac{b}{r}\right)^2 = \frac{a^2 + b^2}{r^2} = 1$$

Дано $z = a + bi \in \mathbb{C}^*(\mathbb{C}^* = \mathbb{C} \setminus \{0\})$, тогда:

$$\Rightarrow \exists \varphi \in \mathbb{R} : \frac{a}{r} = \cos \varphi, \frac{b}{r} = \sin \varphi$$

$$\left[\frac{a}{r} = \cos \varphi \implies \left(\frac{b}{r} \right)^2 = 1 - \cos^2 \varphi = \sin^2 \varphi; \qquad \varphi = \pm \varphi \right]$$

$$z = |z|(\cos\varphi + i\sin\varphi)$$

– тригонометрическая форма z

$$\operatorname{Re} z = |z| \cos \varphi$$

 $\operatorname{Im} z = |z| \sin \varphi$

 φ называется аргументом $z,\, \varphi$ определено с точностью до кратных $2\pi,\, \text{т.e.}\ \varphi$ – аргумент $z,\, \text{то}\ u\ \varphi + 2\pi k$ – аргумент $z \forall k \in \mathbb{Z}.$ Если $\varphi \in [0,2\pi),$ то такой φ называется главное значение аргумента z.

Замечание. Верно и обратное:

$$\cos \varphi' = \cos \varphi \qquad \sin \varphi' = \sin \varphi$$

 $\implies \varphi' = \varphi + 2\pi k, k \in \mathbb{Z}$

Теорема 16.1. 1. Пусть $z, w \in \mathbb{C}^*$, тогда

$$arg(zw) = arg z + arg w$$

2. Пусть $z, w \in \mathbb{C}^*$, тогда

$$\arg\left(\frac{z}{w}\right) = \arg z - \arg w$$

3. Пусть $z \in \mathbb{C}^*$, тогда

$$\arg \overline{z} = -\arg z$$

Доказательство.

$$\varphi = \arg z \qquad \psi = \arg w$$

Докажем 1:

$$zw = |z||w|(\cos\varphi + i\sin\varphi)(\cos\psi + i\sin\psi) =$$

$$= |zw|((\cos\varphi\cos\psi - \sin\varphi\sin\psi) + (\cos\varphi\sin\psi + \sin\varphi\cos\psi)i) =$$

$$= |zw|(\cos(\varphi + \psi) + i\sin(\varphi + \psi))$$

$$\implies \varphi + \psi = \arg|zw|$$

Докажем 2:

$$\begin{split} z &= \frac{z}{w} w \\ \Longrightarrow & \arg z = \arg \frac{z}{w} + \arg w \implies \arg \frac{z}{w} = \arg z - \arg w \end{split}$$

Докажем 3:

$$\begin{aligned} \arg z &= \varphi \\ z &= |z|(\cos \varphi + i \sin \varphi) \\ \overline{z} &= |z|(\cos \varphi - i \sin \varphi) = |z|(\cos (-\varphi) + i \sin (-\varphi)) \\ \Longrightarrow -\varphi &= \arg \overline{z} \end{aligned}$$

Следствие 16.1 (Формула Муавра). Пусть $z=r(\cos\varphi+i\sin\varphi), r=|z|,\ mor\partial a$

$$\forall n \in \mathbb{Z}: z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

$$\begin{split} \arg z &= \varphi \\ n > 0 \qquad z^n = r^n(\cos(n\varphi) + i\sin(n\varphi)) \\ n &= 0 \qquad 1 = 1 \\ n < 0 \qquad n = -m, m \in \mathbb{N} \\ z^n &= \frac{1}{z^m} = r^{-m}(\cos(0 - m\varphi) + i\sin(0 - m\varphi)) = r^n(\cos(n\varphi) + i\sin(n\varphi)) \end{split}$$

Корни из комплексных чисел

Теорема 17.1. Пусть $w=r(\cos\varphi+i\sin\varphi), r>0, \varphi\in\mathbb{R}, n\in\mathbb{N}$. Тогда существует ровно n таких $z\in\mathbb{C}$, что $z^n=w$, а именно, $z_0,z_1,...,z_{n-1}$, где

$$z_{j} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi j}{n} + i \sin \frac{\varphi + 2\pi j}{n} \right)$$

Доказательство. Решим уравнение $z^n = w, w \in \mathbb{C}, n \in \mathbb{N}$, относительно z. Если $w = 0 \implies z = 0$. Иначе пусть $r = |w|, \varphi = \arg w$. Будем искать z в тригонометрическом виде:

$$\rho(\cos\psi + i\sin\psi), \rho > 0, \psi \in \mathbb{R}$$

$$z^{n} = w \Leftrightarrow \rho^{n}(\cos n\psi + i\sin n\psi) = r(\cos\varphi + i\sin\varphi)$$

$$\Leftrightarrow \begin{cases} \rho^{n} = r \\ n\psi = \varphi + 2\pi j, j \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} \rho = \sqrt[n]{r} \\ \psi = \frac{\varphi + 2\pi j}{n}, j \in \mathbb{Z} \end{cases}$$

$$\Leftrightarrow z = \sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi j}{n} + i\sin\frac{\varphi + 2\pi j}{n}\right), j \in \mathbb{Z}$$

$$\{z : z^{n} = w\} = \{z_{j} : j \in \mathbb{Z}\}$$

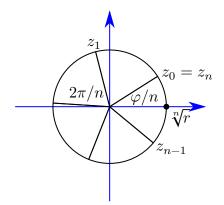
Выясним при каких $j, k: z_j = z_k$

$$z_j = z_k \Leftrightarrow \frac{\varphi + 2\pi j}{n} = \frac{\varphi + 2\pi k}{n} + 2\pi t, t \in \mathbb{Z}$$

$$\Leftrightarrow \frac{2\pi j}{n} = \frac{2\pi k}{n} + 2\pi t, t \in \mathbb{Z} \Leftrightarrow j = k + tn, t \in \mathbb{Z} \Leftrightarrow j \equiv k \pmod{n}$$

$$\Longrightarrow \{z : z^n = w\} = \{z_j : j = 0, 1, ..., n - 1\}$$

$$z_0, ..., z_{n-1} - \text{различны}$$



$$z_n = z_0$$

Тогда $z_0, z_1, ..., z_{n-1}$ – вершины правильного n-угольника

$$z_{j} = z_{0} \cdot \underbrace{\left(\cos\frac{2\pi j}{n} + i\sin\frac{2\pi j}{n}\right)}_{\zeta_{j}}$$

$$\zeta_{j} = \zeta_{1}^{j} \qquad \zeta_{1} = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$$

$$z_{0}, z_{0}\zeta_{1}^{1}, z_{0}\zeta_{1}^{2}, ..., z_{0}\zeta_{1}^{n-1}$$

Следствие 17.1. $\Pi pu \ n > 1$:

$$\sum_{z^n=w} z = \sum_{i=0}^{n-1} z_0 \zeta_1^j = z_0 \zeta_1^n - z_0 = 0$$

Предложение 17.1. Пусть $n \in \mathbb{N}$, Тогда

$$\mu_n = \{ \zeta \in \mathbb{C} : \zeta^n = 1 \}$$

– nodepynna в \mathbb{C}^*

Доказательство. 1. Множество не пустое $(1 \in \mu_n, |\mu_n| = n)$

- 2. Замкнуто по умножению $(\zeta, \zeta' \in \mu_n \implies \zeta\zeta' \in \mu_n)$
- 3. Существует обратный по умножению ($\zeta \in \mu_n \implies \zeta^{-1} \in \mu_n$)

3 aмечание. μ_n – циклическая группа порожденная элементом ζ_1

$$\mu_n = \langle \zeta_1 \rangle = \langle \zeta_{-1} \rangle$$
$$g \in G \qquad \langle g \rangle = \{ g^n : n \in \mathbb{Z} \}$$